一个成功的教案需要经过不断的实践和反思,通过教案,教师可以更好地与同事进行教学经验的分享和交流,以下是360好工作网小编精心为您推荐的北师大六上数学教案优质8篇,供大家参考。
北师大六上数学教案篇1
教学内容:
北师大版小学数学五年级上册。(教科书第82、83页。)
课标分析:
本节课的主要内容是使学生能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系,发展学生的归纳与概括的能力,渗透数学建模的思想,从中感受数学文化的魅力。
教材分析:
本课的内容是独立成篇的,这节课与本单元的其它知识之间没有必然的前后联系,是一节相对独立的数学活动课。教材提供的学习内容对于五年级的学生来说比较容易。但本课知识虽然简单,却是帮助学生建立数学模型的好题材,即是让学生能在观察活动中,发现点阵中隐含的规律,又是让学生体会到图形与数的联系,发展学生归纳与概括能力,渗透数学建模思想。
学生分析:
1、学生的知识基础
五年级学生在数的方面,已经认识了自然数和整数,倍数因数,奇数偶数,质数合数,小数、分数等。在形的方面,对长方形、正方形、平行四边形,三角形,梯形的特征也有了深刻的认识。但是学生对利用图形研究数,寻找数和图形之间的联系,还有困难。学生对线围成的基本图形有深刻的认识,但是点阵中的几何图形,只有点,没有线,学生要利用自己的想象加以补充和延伸,这对学生来说会感觉比较陌生。
2、学生的能力基础
学生在一年级学过找规律填数,二年级学过按规律接着画,四年级学过探索图形的规律。因此五年级学生具备一定的观察能力、抽象概括能力、逻辑推理能力等。然而小学生的思维特点是从具体形象思维逐步向抽象思维过渡,这种抽象逻辑思维在很大程度上仍然依靠感性经验的支持。而这节课完全是数学思想、数学方法的教学,极为抽象,因此对部分学生来说还是会感觉有点困难。
教学目标:
1.能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系。
2、培养学生推理、观察、归纳和概括能力。
3、感受“数形结合”的神奇之美,并获得“我能发现”之成功体验。
教学重点:
探究发现点阵中的规律。
教学难点:
总结概括规律。
教学准备:
课件,五子棋,磁扣等。
教法学法:
1、教师教学方法:让学生独立或合作式探究规律,鼓励学生有自己的发现、有不同的发现。尽量减少教师的介入
2、学生学习方法:大胆让学生画一画、摆一摆、算一算,让学生多角度探究规律,充分感受美图美思
教学过程:
一、展示图片,引出课题
1、展示图片,(投影)今天老师给大家带来了几幅图片,请同学们欣赏。
师:这些图片有什么特点?
生:好像都是由点组成的。
师:是呀,不要小看了这样一个小小的点,点是几何图形中最基本的图形,许许多多的点按照一定的规律排列起来就构成了点阵。
早在20xx多年前,古希腊的数学家们就是从这样一个小小的点开始研究,并且发现了有许多个这样的点组成的点阵中许多有趣的规律。这节课,我们也来尝试研究点阵的规律。(板书课题——点阵中的规律)。
二、细心观察,探求规律
1、出示正方形点阵,探索正方形点阵的规律。
a、第一个规律。
师:(出示点阵),这就是他们当时研究过的一组点阵,请大家用数学的眼光仔细观察,思考这样两个问题:(出示思考题)(指名读)
(1)每个点阵可以看成什么图形?
(2)每个点阵中分别有多少个点?你是怎样观察出来的?
小组讨论,指名回答。
师:每个点阵可以看成什么图形?(正方形),同意吗?
生1:我认为第一个点阵不能看成一个正方形,是一个圆形。
师:其他同学也同意他的观点吗?
师:其实第一个点阵虽然只是一个点,但是我们可以把它看成边长是1的小正方形。是吗?
师:每个点阵中分别有多少个点?
生2:第一个点阵有1个点,第二个点阵有4个点,第三个点阵有9个点,第四个点阵有16个点。
师:你能说一说你是怎么得到每个点阵中点的个数的吗?你是怎样观察出来的?
生:我是通过数出每个点阵中点的个数得到的。
师:谁还有不同的方法?有没有更快一些的方法?
生:我是通过计算得到的。
师:能具体说一说是怎样通过计算得到的吗?
生:第一个点阵有1个点;第二个点阵横着看,每行有2个点,有2行,共有2×2=4个点;第三个点阵每行有3个点,有3行,共有3×3=9个点;第4个点阵每行有4个点,有4行,共有4×4=16个点。
师:同学们现在你们发现正方形点阵的规律了吗?点阵的序号与它的点的个数算式有没有关系?有什么关系?如果用字母n来表示点阵的序号,那么正方形点阵点的个数是多少呢?
生:我们分析了前面几个点阵图的特点,认为在这个点阵图中,点的个数的规律是:1×1,2×2,3×3,4×4,也就是n×n 师:这种数法真是又快又方便!照这样下去,能不能根据你们的发现画出第5个点阵呢?(学生画,指名说,教师投影显示)
师:第6个呢、第7个第100个点阵的点的个数都能瞬间求出来。也就是说:“是第几个点阵,就用几乘几”(板书)
师:如果一个点阵它有81个点,它应该是第几个点阵?每行有几个点?每列有几个点?
(这个画点阵的过程虽然简单,但体现了由数——形的转换。培养了学生主动进行数形转换的意识。)
b、第2个规律
师:刚才我们是怎样观察的?(横着数和竖着数)
正方形点阵还有没有其它的观察方法呢?能不能换个角度观察?
“斜着看又可以得到什么新的与序号有关的算式呢?请同学们独立思考,写出算式,然后汇报。”(投影)
观察并思考
(1)分别用算式表示每个点阵点的个数。
(2)你发现了什么规律?
学生汇报,教师板书
第1个:1=1
第2个:1+2+1=4
第3个:1+2+3+2+1=9
第4个:1+2+3+4+3+2+1=16
第n个:1+2+3+n++3+2+1
师:“谁发现什么规律呢?”
生:“如第2个点阵就从1加到2再加回来,第3个点阵就从1加到3再加回来,第4个点阵就从1加到4再加回来”。
师小结:“第几个点阵就从1连续加到几,再反过来加回到1”这个规律。
刚才是横竖数,“第几个点阵就是几乘几”。
c、第3个规律
师:刚才同学们发现了点阵中的两个规律,这些点阵中还有其它的规律吗?还能换个角度去思考吗?(出示教材第82页第(3)题图),老师把第5个点阵中的点用五条折线划分,这样划分后,看看你又有什么新发现呢?
师:我们把第1个折现内的点看成第一个点阵,该用什么算式表示?其他呢?小组讨论,列出算式,全班汇报。
小组代表汇报。
生:(总结)每用折线画一次后,点阵中的个数是
1=1 1+3=4 1+3+5=9 1+3+5+7=16
师:(总结)这样划分后,点阵中的规律是:1,1+3,1+3+5,1+3+5+7,
师:第1个点阵是1,第2个点阵是在第1个的基础上多3个,第3个点阵呢? 有的学生可能说:“这次都是奇数相加。”
教师问:“从奇数几加起?加几个?是随意的几个奇数相加吗?”
通过这样的提问,引导学生说出“第几个点阵就从1开始加几个连续奇数”。
师:真了不起。这种划分方法,我们可以叫做“折线划分法”。
第几个点阵,就是从1开始加几个连续奇数。
通过研究点阵,我们发现这组正方形点阵中有很多规律。这3种规律是从不同的角度观察出来的,无论你从什么角度去观察,得到的结论都与它的序号有关系,所以我们以后再研究点阵的时候,都要想一想跟它的序号有什么关系,这样才能更简单。
(在这里,教师不是让学生发现规律就结束了,而是让学生活学活用这些规律。让学生体会到我们刚才发现的正方形点阵中的规律,其实就是一个完全平方数的规律,它可以应用到所有的完全平方数。)
刚才这3种方法,哪一种更简便?你更喜欢哪一种?那么我们再研究正方形点阵的时候,用哪一种更简便?但点阵是丰富的,多变的,不仅只有正方形点阵,还有其他图形的点阵。这时,我们就需要开拓自己的思维,多想一些方法来研究它们与序号之间的关系。有没有兴趣再研究其他图形的点阵?
(在刚才的新课教学的环节中,学生经历了观察、思考、合作、交流、表达等过程,培养了观察能力、想象能力、概括能力。并深刻体验到数与形,数与式,式与式之间的联系,培养学生利用数形结合的思想来解决问题的意识和能力。)
三、牛刀小试
1. (课件出示教材第83页试一试第1题)师:你们能用刚学过的几种方法中发现这个点阵的规律吗?
生:竖排×横排:1×2,2×3,3×4,4×5 师:与它们的序号有什么关系?都是序号和它后面相邻的两个自然数的乘积。在点子图上画出第5个点阵。
小组交流,研究:上面的点阵还有其他的规律吗?
生:(1)两个两个数:1×2,3×2,6×2,10×2,15×2 (2)斜着一层一层数:1+1,1+2+2+1,1+2+3+3+2+1,1+2+3+4+4+3+2+1 2.师:同学们真善于发现和创造规律。除了正方形和长方形点阵外,还有很多其它形状的点阵,我们研究他们,同样会有很大的收获。看看,这是一组什么形状的点阵?(课件出示试一试第2题三角形点阵图)你能用一层一层数的方法,表示你发现的规律吗?展示,根据你发现的规律画出第五个点阵。
生;1,1+2,1+2+3,1+2+3+4
师:其他同学看明白了吗?有什么规律?(第几个点阵,就从1加到几。)
上面的点阵还有其他的规律吗?学生思考,指名说。(投影显示)
四、兴趣优在:(课件出示教材第83页练一练)
第2题:按规律画出下一个图形。
师:这道题就象梅花桩,指第一个,走了几个梅花桩?
生:3个。
师:指第二个,共走了几个梅花,增加几个桩?
生:7个,增加了4个。
师:指第三个,共走了几个梅花桩,又增加了几个桩?
生:13个,又增加了6个。
师:如果再往下走,你们想想会再多走几个桩,你能写出算式吗?写完算式,学生自己独立画出点阵。小组合作,讨论点阵中蕴涵的规律,然后汇报交流。
生:交流,探索总结规律
(这一题与前几个题区别很大,前几题的点阵可以看作规则的几何图形,这一题点阵图不规则,要画出下一个图形,既要抓住数量的变化,又要抓住形状的变化。进一步体会到数形结合的重要。)
五、知识拓展
欣赏生活中的点阵图片。思考:生活中有哪些地方运用点阵的知识?(座位、站排做操、楼房的窗子等。
师:点阵不只是点,很多有规律的排列,都可以看成点阵。
投影跳棋、围棋、十字绣、花坛里的鲜花、水晶灯等图片。
六、课堂小结
师:同学们今天学习了这么多的点阵,有没有收获,哪些收获?
七、课后操作
自创新的点阵图,并说出点阵规律。
北师大六上数学教案篇2
设计说明
本节课是从学生已有的生活经验和知识背景出发,促使学生对这些分数逐步归纳内化,从而上升到数学层面来认识它们的意义及特点。本节课教学在设计上有以下特点:
1.创设生动有趣的分饼情境,激发学生的学习兴趣。结合估一估的猜测活动,让学生在动手操作的过程中,通过折一折、剪一剪、涂一涂、画一画,体验真分数、假分数和带分数的产生过程,并辅以教具演示及课件动态演示,使学生由具体形象思维逐步建立表象,抽象出数学概念。
2.注重对学生能力的培养。在教学中引导学生说出不同的分饼方法,充分体验分饼策略的多样化,利用数形结合,让学生了解假分数、带分数和1的关系,有效地培养学生动手操作能力及数学思维,使他们体验到学习数学的乐趣。
3.分组进行分饼活动,从课前预设到学生应会通过预习及课上其他组同学的汇报感受不同的分饼方法及相应分数的产生,实际上还是引导学生全员参与整个活动过程,使学生的体验更真切、丰富。
课前准备
教师准备:ppt课件
学生准备:圆片、彩色笔、剪刀、直尺
教学过程
创设情境,导入新课
课前播放动画片《西游记》主题曲。
师:同学们看过《西游记》吗?唐僧师徒四人,你最喜欢谁?为什么?
预设生1:我最喜欢猪八戒,因为他呆头呆脑,十分可爱。
生2:我最喜欢沙僧,因为他很实在。
生3:我最喜欢孙悟空,因为他本领大,能降妖除魔。
生4:我最喜欢唐僧,因为他是师傅。
师:唐僧师徒四人在西天取经的路上遇到很多困难,有些是他们自己解决的,有些是观世音菩萨帮他们解决的。今天,咱们也来帮他们解决一个问题,有关“分饼”的问题。(板书课题:分饼)
设计意图:充分利用教材的情境图,创设一个接近学生喜好的动画情境,调动学生的兴趣。让学生帮唐僧师徒解决“分饼”问题,激发学生的求知欲,为后面的教学埋下伏笔,紧扣主题。
动手操作,探究新知
1.分饼,质疑。
唐僧遇到的问题:唐僧有8张一样大的饼(课件出示8张饼和唐僧的头像),平均分给师徒4人,每人分得多少张饼呢?你能用数学算式表示吗?(学生列式,课件出示算式)
师:沙僧也遇到一个问题,把1张饼平均分给师徒4人,怎么分呢?(课件出示1张饼和沙僧的头像)
预设生:把1张饼平均分成4份,折叠再折叠,每人分得1份。(课件演示动画,呈现把1张饼切成大小一样的4份,每人1份)
师:现在猪八戒遇到了一个难题:把5张饼平均分给师徒4人,怎么分呢?请同学们帮猪八戒想一想。(课件出示5张饼和猪八戒的头像)
2.探究5张饼平均分给4个人的方法。
(1)估一估。
每人分到多少张饼?
(2)以小组为单位探究分饼的方法。
以圆片代替饼,动手折一折,涂一涂,画一画,剪一剪,分一分。
(3)汇报结果。
老师请一些小组的同学上台演示,边做边说。(实物投影展示)
方法一:把1张饼平均分成4份,每人分到1份,每人分到张,按照这样的方法,再分第2张饼,第3张饼,第4张饼,第5张饼。最后每人分到5个张,即张。
方法二:把5张饼重叠放在一起分,平均分成4份,每人分到5张饼的,就是张。
方法三:先分4张饼,每人1张,再分剩下的1张饼,把剩下的这张饼平均分成4份,每人分到1份,即分到张,合在一起是1张又张。
(4)质疑。
师:从图上看,每人分到了,这是怎么回事呢?
生:这可不是1张饼的,而是5张饼的;也就是说,的整体“1”是5张饼,不是1张饼。5张饼的等于1张饼的,所以,5张饼的也是张饼。
设计意图:让学生通过想一想、说一说、剪一剪、分一分等活动,感知数学、体验数学,体现学习的自主性和学生的主观能动性,演示不同的方法,经历认识分数的产生过程,体验成功的喜悦。
3.明确带分数的读写法。
(1)带分数的写法。
师:1张又张,用分数怎么表示呢?
师演示其写法:先写整数1,表示1张饼,再紧挨着整数写分数,分数线要与整数中间对齐,表示张饼。可以写作:1。
(2)带分数的读法。
读作:一又四分之一。
4.认识真分数、假分数和带分数。
师:(指着两组圆片)这两组圆片分得一样多吗?这个分数有什么特点?1与呢?这两个分数相等吗?这两个分数有什么特点?
生汇报交流,师点出分数的名称。
生1:的分子小于分母。
明确:这样的分数是真分数。(谁来说说还有哪些真分数?举例)
生2:的分子大于分母。
明确:这样的分数是假分数。(谁来说说还有哪些假分数?举例)
生3:1是整数加真分数。
明确:这样的分数是带分数。(谁来说说还有哪些带分数?举例)
5.探究真分数、假分数和带分数的特点,明确真分数、假分数和1的关系。
师:下列分数哪些是真分数,哪些是假分数?请将它们填在相应的方框里。
北师大六上数学教案篇3
设计说明
1.注重培养学生学习的自主性。
引导和培养学生的自主学习能力是切实可行的,对学生养成终身学习的习惯起着不可估量的重要作用。本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。
2.培养学生的解题能力。
本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的密切联系,使学生的解题能力、合作能力及归纳能力得到提高。
课前准备
多媒体课件
教学过程
⊙创设情境,提出问题
1.介绍“物物交换”的背景知识。
人类使用货币的历史产生于最早出现物质交换的时代。在原始社会,人们使用“物物交换”的方式交换自己所需要的物资,如用一只羊换一把斧头。我们今天所学的数学知识就从“物物交换”开始。
2.呈现问题。
同学们算一算,14个玩具汽车可以换多少本小人书?
设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定基础。
⊙尝试解决,体会联系
1.想一想。
师:同学们算一算,14个玩具汽车可以换多少本小人书?把你的想法记录在本上。
2.说一说。
教师引导学生交流各自的想法,体会在“物物交换”的过程中,玩具汽车的数量与小人书的数量之间存在的关系。
预设
方法一 14÷4=3.5,3.5×10=35(本)。
方法二 10÷2=5,14÷2=7,5×7=35(本)。
方法三 4个玩具汽车=10本小人书,14÷4=3……2,2个玩具汽车=5本小人书,10×3+5=35(本)。
方法四 4个玩具汽车=10本小人书,8个玩具汽车=20本小人书,12个玩具汽车=30本小人书,2个玩具汽车=5本小人书,12+2=14(个),30+5=35(本)。
⊙自主学习,探究新知
1.提出新的要求。
师:假设14个玩具汽车可以换x本小人书,你能尝试用比例的知识解决问题吗?
2.学生尝试列式。
预设
方法一 4∶10=14∶x。
方法二 10∶4=x∶14。
方法三 14∶4=x∶10。
方法四 4∶14=10∶x。
3.交流汇报写出比例的主要依据。
4.学生独立解比例。
5.汇报结果。
预设
生1:根据在比例里,两个内项的积等于两个外项的积,可以把这个比例转化成4x=10×14。
生2:我是这样计算的:
4∶10=14∶x
解:4x=140
x=35
6.出示课堂活动卡,组织学生先和同伴交流,再独立解决。
(师巡视,适时指导)
7.验算:把求出的结果代入比例验算一下,看等式是否成立。
(学生自主验算)
8.教师小结。
解比例的关键是根据“内项的积等于外项的积”写成等式,再用等式的性质解方程。
设计意图:将解比例的学习融入到问题解决的过程中,引导学生自主独立解决,然后组织学生汇报自己的解法,这样学生对新知识就会更加理解。
北师大六上数学教案篇4
教学目标:
?知识教学点】
1.掌握小数加减计算过程中需要进位和退位的算法,能正确地进行计算。
2.能独立分析和解决用小数加减计算可以解决的简单问题。
?能力教学点】培养估算意识,能结合具体情境进行估算,并解释估算的过程。
教学重点:
掌握小数加减法进位、退位的计算方法。
教学难点:
掌握小数加减法进位、退位的竖式算法。
教具准备:
课件
教学过程:
一、创设情景。
1、笑笑到邮局寄书给她的好朋友小明。请你们仔细观察这幅图,再与同桌说一说从图中发现了哪些数学信息,可以提哪些数学问题?
?设计意图】培养学生提问题的能力。体现数学来源于生活,服务于生活的基本理念。
二、自主探索,解决问题。
1、下面,咱们先来解决“一共花了多少钱?”的问题。
(1)引导学生估算。
师:大家现在能不能估算一下笑笑大约要付多少邮费呢?
?设计意图】结合具体情境进行估算,并解释估算的过程。
(2)尝试解决问题
师:自己在练习本上试着做一做,你是怎样算出得数的,把过程写下来。
(3)交流算法。
a、1元+12元=13元,6角+8角=14角=1元4角,所以是14元4角.
b、1.6元=16角,12.8元=128角,16+128=144角,
c、用竖式:
1.6
+12.8
14.4
?设计意图】先自己思考,经历了自己解决问题的过程;再交流,体现算法的多样,活跃学生思维。
(4)讨论。
提问:用1.6+12.8竖式计算小数加法时要注意什么?
小结:和整数加法一样,满十要向前一位进一。
?设计意图】通过讨论,总结小数进位加法的竖式算法,让学生能掌握算法。
2、尝试练习
(1)2包的邮费相差多少元?
(学生思考后在作业本上独立完成,全班交流计算方法。)
(2)小红付给阿姨15元,应找回多少元?
①学生思考后在作业本上试做。
②汇报交流算法。
(3)师:在计算小数减法时要注意什么?(学生讨论交流。)
师小结:和整数减法一样,哪一位不够减,要向前一位借一。
?设计意图】自主探索小数退位减法的计算方法,小结竖式算法,让学生掌握竖式算法。
3、揭示课题。
师:同学们,我们今天学习的小数加减法和上一节课学的有什么不同?
师揭示课题,板书:小数的加减法(进位或退位)
三、巩固练习。
1、书本练一练第一题。
学生独立完成其计算,选几题说说计算的方法。
2、森林医生。
说出错误的原因,然后将其订正在旁边。
3、书本第3、4、5题。
(1)学生读题,理解题意。
(2)列出算式并计算。
(3)全班交流,并说说解题的过程。
?设计意图】练习的设计形式多样,而且具有层次性。不仅巩固了学生的计算能力,而且还培养了学生应用新知的能力。
四、课堂小结。
今天你学到了什么?计算时要注意什么?
板书设计:
寄 书 ——小数的加减法(进位或退位)
(1)1.6+12.8=14.4(元) (2)12.8-1.6=11.2(元) (3)15-14.4=0.6(元)
北师大六上数学教案篇5
教学目标:
1.结合具体事例,经历综合运用所学知识解决合理购物问题的过程。
2.了解合理购物的意义,能自己做出购物方案,并对方案的合理性作出充分的解释。
3.体验数学在解决现实问题中的价值,丰富购物经验。
重难点分析:
教学重点:学会理财,能对自己设计的理财方案作出合理的解释。
教学难点:能对自己设计的理财方案作出合理的解释。
教学过程:
一、创设情境
师:同学们,现实生活中,商家为了吸引顾客或扩大销售量,经常搞一些促销活动,谁来说一说,你都知道哪些促销方式?
师:同学们知道的可真多,日常生活中,我们如何利用商家的促销手段,学会合理购物呢?
二、促销问题
(一)观察情境图,先了解方便面的三种包装和一袋的价格,计算出其他两种包装的价格写在书上,再了解三个商店的优惠条件。
师:这节课,我们就来研究购物问题。
板书:学会购物
师:同学们打开书第80页,看方便面促销问题,认真观察上面的图,说说你们从图上都发现了哪些信息?
师:一袋方便面1.5元,5袋一包的多少钱?24袋一箱的多少钱?
师:三家商店都买这种方便面,他们推出了不同的优惠条件。看图,说一说甲、乙、丙三个店的优惠条件各是什么?
生:我发现甲店是“买一包送一袋,买一箱送一包。”乙店是打九折优惠;丙店是购物达到30元就能打八折优惠。
(二)提出:不计算,判断买一袋方便面去哪家商店合适的问题,学生发表意见后,再
讨论“买2袋、3袋呢?”“买几袋才能享受甲店的优惠条件?”
师:作为消费者,买同样的东西肯定愿意买便宜的,也就是少花钱。同学们不计算,你能判断出买1袋方便面去哪家店合适吗?
生:在乙店合适,因为买一袋在甲店、丙店都得不到优惠。
师:那买2袋、3袋呢?
生:买2袋、3袋也不行。
师:买几袋才能享受到甲店的优惠条件呢?
生:买5袋或5袋以上就可以得到甲店的优惠条件。
(三)提出:买5袋方便面在哪个店合适的问题。学生计算后,全班交流。
师:你们真聪明。那么,如果要买5袋,算一算,甲店便宜还是乙店便宜?
学生算完后,指名回答。
(四)先讨论买7袋方便面在甲店可以怎样买,再让学生计算买7袋方便面在哪个商店合适,然后交流。
师:现在如果想买7袋方便面,在甲店可以怎样买?
生:只买6袋就行了。因为商店会送一袋。
师:真聪明,那就是说,要买7袋,只算6袋的钱就可以了。那大家算一算,买7袋方便面,在哪个商店买比较合适?
学生自己计算,然后交流。
甲店:1.5×6=9(元)
乙店:1.5×7×90%=9. 45(元)
结论:甲店合适。
(五)提出:买几袋方便面到乙店就比较合适的问题,鼓励学生自主计算。然后,交流学生探索的过程和结论。
师:通过比较计算结果,买7袋去甲店合适。那么买几袋方便面到乙店就比较合适呢?请同学们自己算一算。
学生自主计算,教师个别指导。
师:谁来说一说你是怎样做的,结果是什么?
如果有学生算到10袋就推出结论,给予表扬。
(六)提出:买10袋方便面能享受丙店的优惠条件?得到否定的答案,并算出买20袋才能达到丙店的优惠条件。
师:现在,请同学们想一想,买10袋方便面能享受丙店的优惠条件吗?
生:不能。因为买10袋方便面才花10元钱,不够丙店的优惠条件。
师:那买多少袋方便面才能达到丙店的优惠条件呢?请同学们算一算。
学生计算后汇报:
生:30÷1.5=20(袋),买20袋才能达到丙店的优惠条件。
(七)提出问题(4)启发学生计算,然后用计算法等说明问题的原因,进一步认识到“合理购物”的意义。
师:看来丙店的优惠条件不是很容易享受到的。请同学们课件中第(4)个问题。两位同学都在丙店买方便面,奇怪的是,李明花钱多买的少,而王强花钱少买的多,这是为什么?
请同学们讨论,并算一算是什么原因。(学生独立计算)
师:谁能解释这到底是为什么?
生1:李明只花了27元不够丙店的优惠条件。
生2:因为王强买了20袋,20×1.5=30 (元),可以打八折优惠,所以只花了24元,
20×1.5×80%=24(元)
师:通过这两位同学的经历,你们有什么收获?
生:在购物时,一定要先算一算在哪家购物合适,才去买,就能充分利用商家的促销手段,少花钱多购物。
(八)出示“议一议”问题,启发学生可以算一算,然后,交流解决问题的方法和结果。
师:那么现在请大家发挥你的聪明才智讨论一下,如果买35袋方便面,怎样买比较合适?也可以算一算。
给学生思考和计算的时间。
师:谁愿意说说你是怎样判断的,结果是什么?
师:比较这几位同学的方案,哪一种比较合适?
结论:在丙店买最合适。
师:比较一下上面几种购买方案,我们发现,最合适的要少花5元多钱,所以,购物时我们要根据购物多少的不同,选择不同的商店,充分利用商家的优惠政策,就能够少花钱多购物,这种“合理购物”。
三、有奖销售
(一)出示“购物广场”上的销售广告,学生阅读了解广告中的数量信息。
师:为了促进销售,商家还会搞另外一种促销方式——有奖销售。现在让我们到购物广场去看一看吧。打开书77页,读一读上面的销售广告。
学生阅读“购物广场”上的销售广告。交流一下广告中的信息。
(二)出示问题(1),计算奖金额和中奖率。
师:根据这则广告,请同学们算一算,这次有奖销售活动的奖品总金额是多少元?中奖率是百分之几?
学生独立思考并计算。然后全班交流。
1.奖品总金额:
500×10+100×20+50×60=10000(元)
2.中奖率:(60+20+10)÷1000=9%
(三)出示问题(2),学生计算销售额,并分析奖金额与销售额之间的关系,进一步认识“有奖销售”的意义。
师:谁知道如果奖券已经全部发出,商家至少卖出了多少元的商品?
生:商家每发出一张奖券,说明至少已卖出了100元商品,所以1000张奖券全部发完,1000×100=100000(元),商家至少卖出10万元的商品。
师:为什么用“至少”这个词?
生:因为还有很多顾客买的商品不足100元或超过整百的余额部分不能领取奖券,我们无法计算。
师:那么奖金额至多占销售额的百分之几?
学生计算后汇报。
生:奖金额是10000元,而销售额是100000元,10000÷100000=10%,奖金额最多占销售额的10%。
师:至多“10%”说明了什么?
生:说明最多占10%,很可能不到10%。
师:算一算,这次有奖销售,商家计划让利给顾客多少钱?
生:1万元。
四、分析讨论
(一)教师谈话,提出问题(3),让学生自主计算。
师:很好。我们了解到这个商家有奖销售让利给顾客1万元,现在我们换一种方式比较一下,如果这10万元的商品全部按八五折销售,同学们算一算,会让利给顾客多少元?
学生独立思考、计算。
生:100000-100000×85%=15000(元)
(二)分别提出“议一议”的两个问题,让学生充分发表自己的意见。教师进行正确引导。
师:请同学们对比一下这两种结果,你有什么感想?
师:那么如果你是顾客,你会选择哪种销售方式?为什么?
师:大家都可以有不同的想法,但是,我们还是小学生,不能单独参与抽奖活动。如果要做,也要在大人的带领下去做。
北师大六上数学教案篇6
教学目标
1、认识长度单位米,初步建立1米的长度观念,知道1米=100厘米。
2、知道量比较长的物体要用米做单位,会用米量物体的长度。
3、培养学生的合作意识。
教学重点 学会测量长度的方法和建立1米的实际观念。
教学难点 建立1米的实际观念和知道1米=100厘米。
教学、具准备 多媒体课件、米尺、绳子、学生尺、等
教学过程
游戏导入,引起认知冲突请学生用厘米量黑板。(课独自探索,也可与他人合作)
认识米
提问:这样测量你感觉怎样?(麻烦)
要想方便的测量就要认识另外一种尺子米尺。
介绍米尺
展示米尺,告诉学生从1100厘米着一段正好是1米。
建立表象
让学生用米尺和自己的身高比一比。获蒋两臂张开伸平庸米尺量出1米的长度。
用米量
用不同的方法测量1米的绳子长是多少厘米?
汇报方法(得出1米就是100厘米)
实践活动
测一测,你跳远的距离是多少米?
四人一组,分组操作。
每人量一物,其他同学监督帮助。
量一量:黑板长、宽,教室长、宽及教室门的高和宽。
学会解决实际问题
1、小华用一根3米长的竹竿量水深,竹竿露出水面1米。水深多少米?
2、找一根绳子和一把米尺,去量一课树干周围有多长。想一想,应该怎样量?总结:这节课你学到了什么本领?1米到底有多长?怎样估测物体的长度?
北师大六上数学教案篇7
教学分析:
按比例分配的练习。
学情分析:
已初步了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。
教学目标:
能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。
教学策略:
练习、反思、总结。
教学准备:
小黑板
教学过程:
一、基本练习
(一)六1班男生和女生的比是3:2
1.男生人数是女生人数的( )
2.女生人数是男生人数的( ),女生人数和男生人数的比是( ).
3.男生人数占全班人数的( ),男生人数和全班人数的比是( ).
4.全班人数是男生人数的( ),全班人数和男生人数的比是( ).
5.女生人数占全班人数的( ),女生人数和全班人数的比是( ).
6.全班人数是女生人数的( ),全班人数和女生人数的比是( ).
(二)学校有买来小足球和小篮球120个,小足球和小篮球个数的比是3比5。学校买来小足球和小篮球各多少个?
把250按2比3分配,部分数各是多少
二、变式练习
1、被减数是36,减数与差的比是4比5,减数是多少?差是多少?
2、有一种药水,按药液与水的比为1比5000配制而成。用这样的药液0.5千克,可配制这样的药水多少千克?
教学反思:
提高练习的灵活度,以及练习的形式。
北师大六上数学教案篇8
教学目标:
1、结合具体情境,探索积的小数位数与乘数的小数位数的关系。
2、让学生在比较中学会观察,学会总结。
3、渗透科学的思维方法。
教学重点:探索积的小数位数与乘数的小数位数的关系。
教学难点:探索积的小数位数与乘数的小数位数的关系。
教学设计
一、创设问题情境:
1、出示一张测量表:这是小强学习测量以后,课外测量的几组数据。你能根据这些数据算出它们的面积吗?
街心广场 长30米宽20米
花 坛长3米宽2米
地板砖 长0.3米宽0.2米
(1)学生独立列式计算后,汇报。
(2)教师根据学生的汇报,板书出3个算式:
街心广场: 30×20=600(平方米)
花坛: 3×2=6(平方米)
地板砖: 0.3×0.2=?
二、探索积的小数位数与乘数的位数之间的关系。
1、讨论:街心广场和花坛面积之间有什么关系?它们的长与宽之间又有什么关系?
总结:长与宽都扩大到原来10倍,面积扩大——100倍;长与宽都缩小到原来10倍,它的面积就缩小到原来的100倍。缩小到原来的100倍也可以说是缩小到原数的1/100,小数点向左移动2位。
2、小组讨论:我们应用刚才发现的现象,来比较花坛和地板砖的面积之间有什么关系?
地板砖与屏幕相比,长和宽都缩小到原来的10倍,它的面积也就缩小到原来的100倍。所以它的积也会缩小到原来的100倍。结果是0.06平方米。
3、这种方法得出来的结果是否正确?你能用其它的方法验证吗?(可以引导学生从直观涂一涂的方法来验证刚材的结论是否正确。)
4、引导学生总结:在小数乘法中,我们可以先把它们看成是整数来算,然后再看乘数的末尾一共有几位小数,就在积的末尾数出几位小数点上小数点。
三、尝试练习,再探规律。
1、试一试:根据第一算式求下面2个算式的积。让学生说说怎样算的。
2、填一填:将上一题的计算结果填入表格中。然后观察积的小数位数与乘数的小数位数之间有什么关系。(小组讨论)
汇报交流:第一个小数的位数与第二个小数位数加起来等于积的小数位数。
根据上面的规律,完成练一练的第1题、第2题。
四、全课小结。
板书设计
积的小数位数与乘数的小数位数的关系
街心广场: 30×20=600(平方米)
花 坛: 3×2=6(平方米)
地 板 砖: 0.3×0.2=0.06(平方米)
会计实习心得体会最新模板相关文章: