通过教案,教师能够更好地预测学生的学习困难和问题,提前准备相应的解决方案,一个成功的教案需要经过不断的实践和反思,360好工作网小编今天就为您带来了苏教版六上数学教案模板6篇,相信一定会对你有所帮助。
苏教版六上数学教案篇1
教学目标:
1、通过练习,使学生能系统地总结出混合运算的运算顺序,以使学生形成良好的认知结构。
2、适时渗透法制、德育教育,让学生建立正确的法制哩念。教学重点:能系统地总结出混合运算的运算顺序。
教学难点:能运用所学知识解决问题。
教学过程:
一、基础练习
⒈揭示课题。
这节课我们将前几节课学习的混合计算进行练习,比一比谁练习得最好。(板书课题)
⒉口算
90÷3012×578×2270÷903×1557÷3200÷5027×396×12280÷40
4×1960÷15
二、整理混合运算顺序
⒈运算顺序。
⑴出示:280+120÷10280+120×10
请同学们算一算,说说这两题的运算顺序是怎样的。
⑵出示:30÷6×530-6+5
请同学们算一算,说说这两题的运算顺序是怎样的。
⑶出示:(120+150)÷9017×(78-29)请同学们算一算,说说这两题的运算顺序是怎样的。
⑷提问:刚刚计算的几道题可以分成几类?应该怎样计算?
⒉完成练习五第2题
⑴出示:480-180+6031+2×30240÷4×20480-(180+60)(31+2)×30240÷(4×20)请同学们分组分别进行计算。
⑵比一比。
提问:每组中两题有什么相同的地方?不同的地方呢?
三、实际应用
⒈完成练习十一第5题。
①出示题目列表。提问:通过这张表,你知道了哪些信息?根据这些信息,要求的是什么问题。请同学们列综合算式来计算。
②指名请同学们说说解题思路,并相应地说综合算式为什么这么列式。
⒉完成练习十一第6题。
①出示第6题的3小题。提问:这3题有什么相同的地方,有什么不同的地方?
②同学们独立完成。
③分析、比较有什么相同的地方和不同的地方?
四、布置作业
完成练习十一第1、3、4题
练习十二⑵
教学目标:
通过练习,使学生进一步了解混合运算的运算顺序,并体会到用综合算式解决问题的思考方法,培养学生运用知识灵活解决问题的能力。
教学重点:了解混合运算的运算顺序,并体会到用综合算式解决问题的思考方法。
教学难点:培养学生运用知识灵活解决问题的能力。
教学过程:
一、基本训练
⒈揭示课题。
这节课我们继续来复习混合运算,完成练习十二上的练习。(板书课题)
⒉口算:
720÷90484÷2450÷5028+4213×4840÷21360×265-1756+8
⒊计算下面各题。指名说说混合运算的运算顺序是怎样的?
87-49+21(90+70)÷80100-5×1332×(47-17)
二、灵活运用
⒈完成练习十二第7题。
⑴出示题目:请同学们一线一组地算一算。
⑵比较:每组中的两题有什么相同点和不同点?每组中的两题有什么关系?
⑶小结:能过这组题的计算,我们可以认识到一个数边续除以两个数,与除以这两个数的积,结果相同。⑷组织同学们分组举例,并证实以上的结论。
⒉完成练习十二第8题
⑴请同学们独立完成,可以不计算,通过观察比较。
⑵集体订正,指名说说每题比较时的思考过程。
⒊完成练习十二第9题
同学们独立完成,发现问题及是纠正。四、全课小结:通过练习,你有那些收获?
十二、布置作业
苏教版六上数学教案篇2
1、目标的定位
目标是教学的灵魂,是一切教学活动的出发点和归宿点,支配着教学的全过程,并规定着教与学的方向。准确把握教学目标是实现有效教学的前提与关键。在课堂设计时,我们应全面了解学生已有的知识经验以及对新知识掌握的情况等,准确把握教学的起点,制定切合学生实际的教学目标。
?比例尺》这课内容是在学生学习了比的知识、正反比例和图形的放缩的基础上学习的。是比的知识、正比例和乘除法意义的综合应用。依据教材和学生已有知识及年龄特点等来重新审视《比例尺》一课,我们不难发现,这部分内容不仅要使学生理解比例尺的意义、掌握求比例尺的方法,对数值比例尺与线段比例尺能进行转化,培养学生的读图、用图、绘图的能力,并发展学生的空间观念,更重要的是通过教学使学生认识到所学知识的价值所在。
值得关注的是:就数值比例尺而言,教材没有就方法比例尺专门的讲解,但是现实生活中有很多这样的例子,就是要学生在理解比的基础上“从不同角度去理解比例尺”,所以我把本节课的重点放在“理解比例尺的含义”上,其次才是计算比例尺,有了深刻的理解,计算自然水到渠成。这样来把握教材,教学起来得心应手,收到良好的效果。
2、创造性地使用教材
?比例尺》这一部分内容对学生来说比较陌生、抽象,难于理解,而且我觉得书中的练习和情境可能不太适合我们的学生,学生不一定会十分感兴趣,可能只是为了解题而解题。因此我仔细分析了教材的设计意图,同时又思考如何将这样一节概念教学恰到好处的与学生的生活实际联系起来。结合人教版教材,我对教材进行了取舍,创设了贴近我所教学生生活实际的题目,考虑线段比例尺和放大比例尺在实际生活中应用很广,因些我在把握教材的基础上,还把比例尺的相关内容拓展进来,从而拓宽和活化教材内容,增强学生对学习内容的亲切感,激发学生的求知欲。
一上课,我首先设计了一个脑筋急转弯题:“老师开车从濮阳到郑州用3个小时,可是有一只蚂蚁却只用5分钟就从濮阳爬到郑州,这是为什么?”,这里创设了情境,激发学生的学习兴趣,然后出示中国地图,让学生从地图中找出濮阳和郑州。接着,引导学生带着老师提出的三个问题进行自学:
1、什么叫比例尺?
2、怎样求比例尺?
3、求比例尺时应注意哪些问题?
这样,培养学生尝试学习和独立思考的能力。只要学生解决好这三个问题,本课的重难点也就解决了。最后提问:学习了比例尺,对我们有什么用处?使学生对今天所学知识有更深入地了解,并引出用比例尺解决问题。
这样,把问题情境与学生的生活紧密联系起来,不仅有利于学生理解问题情境中的数学问题,而且有利于学生体验到生活中的数学是无处不在的,培养学生的观察能力和初步解决实际问题的能力。
3、教学中的不足
在实际教学的过程,孩子们的热情似乎也挺高,反应也不错。像比例尺的概念挺好理解,把线段比例尺改写成数值比例尺也进行了板书,以及必要的练习。自以为这节课的内容也没有什么较大的难度,学生应该都能够接受。可反映到作业本上就不是那么回事了,求比例尺,应该是图上距离比实际距离,有变成实际距离比图上距离的。比例尺互化的格式有几个是创新的,可似乎这几种创新写法不是那么正确。为什么?把孩子叫到身边,我问他们:“我在板书的时候,你们仔细看了吗?”都齐刷刷地回答我看了。“看了怎么连写法都乱七八糟的。”孩子们个个无语,一个个冤枉的样子。
后来我冷静地想了想,可能是以下几个原因:首先对比例尺的接触较少,缩小的比例尺可能看到过,如地图等,放大的比例尺就比较少见。因此,会有一个错误想法,较小的数是图上距离,继而就出现了实际距离比图上距离的情况,其次为了集中孩子们的注意力,我在课堂上会比较注意口头交流,认为懂了可以不写,但实际上说跟写还真的是两回事,会说不一定会写。如果我们把图上距离1厘米等于实际距离20千米的线段比例尺改写成数值比例尺,会说20千米等于2000000厘米,因此写成数值比例尺是1:2000000。这样,学生在写的时候会觉得怎么写好呢?尽管有板书,但那也是走马观花,没有起到实质性的作用。看来以后在课堂上必要的写还真不能省。
苏教版六上数学教案篇3
教学内容:
千米的认识
教材分析:
“千米”是一个常用的长度计量单位,在学生的生活中经常会听到、看到有关千米(公里)的使用信息,建构效果的好与坏,将直接影响到学生对于这部分知识正确观念的形成。由于“千米”是一个较大的长度单位,“直接性”和“可视性”的体悟或者从感受经验比较抽离,对学生来说比较抽象,学习过程中千米概念的建立比较困难,是本课学习的难点。
学情分析:
学生在一、二年级已经认识了长度单位米、厘米、毫米,日常生活中也会在走路上学、乘车旅游、参加运动会等生活经验中接触到千米(公里),这就使得本节课很容易和学生的生活经验结合起来。考虑到学校学生的具体情况,在帮助学生建立1千米实际长度概念时选用学生熟悉周围环境,这样既能有效化解难点,又能让学生体会到生活中处处有数学。
教学目标:
1、使学生认识长度单位千米,初步建立1千米的观念,知道1千米=1000米,并能进行相应的换算。
2、通过实践活动,亲身体验“1千米究竟是多长”,形成对“千米”的量感。
3、在具体的生活情境中认识千米,让学生感受数学与实际生活的联系。
教学重点:
认识千米,知道1千米等于1000米。
教学难点:
通过体验,形成对“千米”的量感
教学关键:
通过亲身体验充分感知1千米究竟有多长。
教学准备:
多媒体课件、练习纸
教学过程:
一、复习引入
1、我们之前已经学过了关于长度的单位,说一说,你学过哪些长度单位?你能不能把它们从大到小排列一下?
板书:米(m) 厘米(cm) 毫米(mm)
请说一说它们之间的进率。
板书:1米=100厘米 1厘米=10毫米
下面的括号中填什么长度单位合适?
课桌的长度约是100( ) 上海环球金融中心492( )
学校运动会比赛跑200( ) 一枚一元硬币的厚度约是2( )
(说明:既复习了旧知,又为探索新知做好铺垫,同时使学生感受到知识之间的系统性。)
3、师:国庆节,老师从上海出发到南京,指示牌显示距离南京还有268(?),后面应该是哪个长度单位呢?
4、揭示课题:用米、厘米都太短了。上海到南京的距离比较远,我们需要用更大的长度单位来测量,今天我们就来认识一个新的长度单位——千米。(板书)
板书:千米的认识
(说明:从现实生活出发让学生产生认知上的冲突,使学生感受到认识千米的必要性。)
二、探究
(一)导入
在日常生活中我们见过“千米”,如:
1、出示图片。
图1:路标。
图2:限速。
师:你还在哪些地方见过或听过“千米”?(让生答)
小结:表示铁路、公路等比较长的距离时,通常用千米做单位。千米又叫做公里,可以用“km”表示。
板书:(公里)km
(二)新课展开:
1、初步建立“千米”观念:
师:各位同学,请大家看运动场的跑到图,它的环形跑道一圈是200米,这样跑几圈刚好是1000米?(5圈)
我们可以写成1千米=1000米 (指导学生朗读:用不同的停顿来区分)
练一练:
2千米=( )米 (让学生说想法)
想:2千米就是2个1千米,即2000米
5千米=( )米
想:5千米就是5个1千米,即5000米
2、再次建立1千米的长度概念
师:1千米到底有多长?
出示学校周边地图:这是我们学校周围的地图,从校门口出发,你认为走到哪里是1千米呢?(学生讨论,交流,反馈)
(说明:以情激趣,使学生感到生边处处有数学,由抽象的“千米”形成正确的表象,从而加深对“千米”的认识。)
三、练习巩固
1千米在你们头脑中已经留下了深刻的印象,下面让我们来做一些练习,看看同学们的掌握
情况。
1.填空
8千米=( )米 4千米400米=( )米
3千米25米=( )米 2750米=( )千米( )米
让学生独立尝试,加深对千米的认识。
(2)交流反馈。
2.选择题
鸵鸟是世界上最大的鸟,身高约4( ),每小时能跑40( )
a.厘米 b.米 c.千米
海拔最高的大河位于我国西藏自治区的雅鲁藏布江,平均高度约为海拔4( )
a.厘米 b.米 c.千米
四、联系生活,学会应用
1、十一期间,小丁丁没有选择出门旅游,他在少年宫参加完活动准备去图书馆,请问,有几条路可以选择?
620m
620m
小丁丁觉得路太远了,他决定打车,请你任选走法,计算一下长度,如果选择出租车,你的选择起步价够吗?
五、课后实践:
1、实地走一走1千米的路。
2、估一估走一千米需要多长时间。
(说明:千米的实际长度的感知,只有通过学生的实践活动,才能有更为深刻的认识)
六、板书:
千米的认识
千米(公里)km 米(m) 厘米(cm) 毫米(mm)
1米=100厘米 1厘米=10毫米
1000米=1千米
苏教版六上数学教案篇4
教学要求:
1、使学生理解小数乘以整数的计算方法及算理。
2、培养学生的迁移类推能力。
3、引导学生探索知识间的练习,渗透转化思想。
教学重点:小数乘以整数的算理及计算方法。
教学难点:确定小数乘以整数的积的小数点位置的方法。
教学用具:放大的复习题表格一张(投影)。
教学过程:
一、引入尝试:
孩子们喜欢放风筝吗?今天我就带领大家一块去买风筝。
1、小数乘以整数的意义及算理。
出示例1的图片,引导学生理解题意,得出:
⑴例1:风筝每个元,买3个风筝多少元?(让学生独立试着算一算)
(2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)
用加法计算:++元
元=3元5角 3元×3=9元 5角×3=15角 9元+15角元
用乘法计算:×元
理解3种方法,重点研究第三种算法及算理。
⑶理解意义。为什么用×3计算? ×3表示什么?(3个或的3倍.)
(4)初步理解算理。怎样算的?
把元看作35角
元 扩大10倍 3 5角
× 3 × 3
1 5 元 1 0 5角
缩小10倍
105角就等于元
(6)买5个要多少元呢?会用这种方法算吗?
2、小数乘以整数的计算方法。
象这样的元的几倍同学们会算了,那不代表钱数的 ×5你们会算吗?(生试算,指名板演。)
⑴生算完后,小组讨论计算过程。
板书:
× 5
(2)强调依照整数乘法用竖式计算。
(3) 示范: 7 2 扩大100倍 7 2
× 5 × 5
6 0 3 6 0
缩小100倍
(4) 回顾对于×5,刚才是怎样进行计算的?
使学生得出:先把被乘数扩大100倍变成72,被乘数扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小100倍。(提示:小数末尾的0可以去掉)
●注意:如果积的末尾有0,要先点上积的小数点,再把小数末尾的“0”去掉。
(5)专项练习
①下面各数去掉小数点有什么变化?
②把353缩小10倍是多少?缩小100倍呢?1000倍呢?
③判断
× 2
7 0
(6)小结小数乘整数计算方法
l 计算 7 ×4 ×4 25×7 ×7
观察这2组题,想想与整数乘整数有什么不同?
怎样计算小数乘以整数?
① 先把小数扩大成整数;
② 按整数乘法的法则算出积;
③ 再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。
l 专项练习 练习一 4
二、运用
1、填空。
( ) 0 .7 4 ( )
× 3 × 3 × 2 × 2
( ) 1 3 5 ( ) 1 4 8
2、做一做 书p3 2
三、体验:(1)今天我们学习了什么?(板书课题)
(2)小数乘以整数的计算方法是什么?
四、作业: 练习一 1、2、3
五、板书: 小数乘整数1
元 3 5角
× 3 × 3
1 5 元 1 0 5角
例2
7 2 扩大到它的100倍 7 2
× 5 × 5
6 0 3 6 0
缩小到它的1/100
六、课后反思:
苏教版六上数学教案篇5
教学目标
1.使学生理解、掌握四则运算的五大定律和两个性质。
2.掌握积、商的变化规律。
3.能运用这些定律、性质和规律进行简便计算,提高计算能力。
教学重点
运用定律、性质和规律进行简算。
教学难点
如何灵活运用。
教具与学具准备
投影仪、投影片、判断牌、选择牌。
教学过程设计
(一)揭示课题
提问:请同学们回忆一下,我们在学习整数四则运算时,已经学过了哪些运算定律?哪些运算性质?(指名回答)
(板书)
加法交换律 减法的性质
结合律
乘法交换律 除法的性质
结合律
分配律
很好,今天我们就来复习这些定律和性质及其应用。(板书:四则运算的定律和性质复习)
(二)复习五大定律
1.提问:这些定律用字母怎样表示?用语言怎么叙述?(学生边回答教师边板书字母公式。)
2.判断下面应用运算定律的过程有没有错误,没错举,有错举,并指出错误所在,改正过来。
投影出示:
(1)(43+25)4=434254
(2)(700+1)68=70068+68
(3)153(220+57)=153220+57
(4)45+(54+55)=54+(45+55)
(5)638+378=(63+37)(8+8)
3.小结:我们运用这些定律时要注意正确。
(三)复习两大性质
1.提问:我们还学习了哪些运算性质?你能把它们用字母表示出来吗?说说它们表示的意思。(学生边说老师边板书。)
减法运算性质:a-(b+c)=a-b-c
除法运算性质:(a+b)c=ac+bc(c0)
强调除法性质中的a,b都要能被c整除,且除数c不能是0。
2.做一做:在等号后面的横线上填数,○里填运算符号。
(1)157-(27+68)=157-27○_________
(2)3214-537-463=3214-(537○463)
(3)(945+63)9=945________○63
(4)156102=156(100○_______)
指名一人做胶片,其他同学做印好的练习片子,然后投影说结果,并说明根据什么性质。
(四)积、商的变化规律
1.提问:我们在学习多位数乘、除法时,还学过积、商的.哪些变化规律?谁还记得?
(1)投影:在乘法里,如果一个因数扩大10倍,另一个因数不变,那么积就________倍;如果一个因数缩小100倍,另一个因数不变,那么积就________倍;或者,一个因数扩大10倍,另一个因数缩小10倍,积________。
想一想:这是什么道理?(是乘法交换律和结合律的具体体现。)
投影说明:
(a10)b=a10b=ab10=(ab)10
(a100)b=a100b=ab100=(ab)100
(a10)(b10)=a10b10
=ab1010=(ab)1=ab
(2)投影回答:在除法里,被除数和除数___________扩大(或缩小)___________的倍数,_______________。
问:你能联系乘、除法的关系和乘法运算定律来说明其中的道理吗?(根据除法是乘法的逆运算关系,这也是乘法运算定律的具体体现。)
说明:整数四则运算的定律和性质,对小数四则运算同样适用。(只有除法的性质略有变化,a,b都要能被c除尽。)
2.练习。
口答:
(1)一个因数扩大100倍,另一个因数扩大10倍,原来的积就____________倍。
(2)把除数扩大100倍,要使商不变,被除数应该____________倍。
(3)在下面的横线上填上适当的数,○里填运算符号。
①3.6+0.85+6.4+0.15=(_______○______)○(______○_______)
②4.53-1.64-0.36=_____○(______○0.36)
③7.85.3+7.84.7=______○(_____○_____)
④4.20.7+2.80.7=(______○______)○______
(五)课堂总结
我们掌握四则运算的五大定律和两个性质主要是为了应用,使计算简便,而且要灵活运用。
(六)课堂练习
1.选择题:(投影出示,学生举选择牌。)
(1)被减数不变,减数增加5,得到的差 [ ]。
①增加5
②减少5
③不变
(2)对于2548,小明想了以下几种计算方法,分别应用了( )知识。
2548=25(40+8)=2540+258=1000+200=1200
应用了( )知识。
2548=25(68)=6(258)=6200=1200
应用了( )知识。
2548=25(50-2)=2550-252=1250-50=1200
应用了( )知识。
2548=(254)(484)=10012=1200
应用了( )知识。
①积的变化规律 ②乘法交换律和结合律
③乘法结合律 ④乘法分配律
⑤乘法交换律
追问:哪种最简便?
2.简算,在片子上完成,指名两个同学用胶片做。
① 1.252.5645
=1.252.5(88)5
=(1.258)(2.585)
=10100=1000
② 5.80.7+0.420.07+407
=587+427+407
=(58+42+40)7=1407=20
集体在投影上订正。
(七)课堂总结
今天这节课我们上得很好。在今后的学习和实践中要注意应用我们所学过的定律和性质,使计算简便,提高效率。
课堂教学设计说明
四则运算的定律和性质是学生进行简便运算的依据。灵活地运用四则运算的定律和性质,不但能提高计算的速度,还能培养学生思维的灵活性。所以在复习中,注重学生对四则运算定律和性质的理解、记忆,再加以灵活运用,从而达到培养学生计算能力的目的,这是非常必要的。因此,在复习中首先要让学生搞清所学过的运算定律和性质有哪些,分别用字母怎么表示,语言怎么叙述,达到全面巩固理解的目的。其间,分别插入适当判断、填空练习,以帮助学生理解及灵活运用。另外,利用积、商的变化规律培养学生思维的灵活性和深刻性,使学生在观察推导中理解积、商的变化规律实际上就是乘法运算定律的具体体现,同时,也为简便计算打开多种途径。然后,在学生全面掌握的基础上出现一组选择题,综合地培养学生运用定律和性质的能力,反馈面也扩展到全班,便于了解多数学生的情况。最后出示两道简算题,让每个学生动手动脑,以考查学生是否掌握了四则运算的定律,是否能灵活地运用。
苏教版六上数学教案篇6
教学内容:
三位数乘两位数的估算。(课文第33页的内容及第34页的“练一练“)
教学重点:
三位数乘两位数的估算的方法
教学难点:
能正确、合理地对数据进行估算
教学关键:
联系实际,灵活处理
教学目标:
1、使学生掌握乘法的估算方法,在解决具体问题的过程中,能应用合适的方法进行估算。
2、能与同学交流自己估计的方法,培养良好的学习品格,形成积极、主动的估算意识。
教具准备:
实物投影仪
学具准备:
同桌准备一张报纸
教学过程:
一、创设情境,提出问题
1、实物投影呈现图片。
略。(图片可以是课文主题图,也可以自选)
教师:你知道这是什么建筑物吗?你有什么感想?你想提出什么数学问题?
2、提出问题。
教师:你能估算这个体育场的座位数吗?
二、合作交流、解决问题
1、让学生认真观察体育场座位排列情况,估一估这个体育场能坐多少人。
(1)独立思考,估算整个体育场座位数;
(2)小组交流,让每个同学都在小组中说一说自己估算的方法,估算的结果数据。
(3)由小组派代表反馈交流结果。
由于图中没有具体数据信息,也没有呈现体育场的四周看台,所以学生的回答不可能得到较准确的数据结果,只要有合理的估算方法,教师就应该予以肯定。
学生1:从图中看出每小块看台大概有50个座位,这个体育场可能有30个看台,大约有1500个座位;
学生2:把体育场分东、西、南、北四个方位,每个方位大约坐1000人,4个方位,大约坐4000人;
学生3:体育场的每一排座位数大允是20xx人,估计这个体育场有30排,大约共6000个座位。
以上估算的方法,都有一定的道理,教师都应该予以肯定和表扬,让学生尝试成功的喜悦。
2、出示具体看台数据,进行估算。
(1)幻灯呈现
这个体育场共有28个看台,如果每个看台的座位数相同,你能估计出这个体育场的座位数吗?
(2)理解数量关系,列出解答版式。
引导提问:
①这个体育场一共有多少个看台?
②每个看台有多少个座位(根据课文插图,说出准确数)?
③整个体育场的座位数可以用什么算式表示?
从而板书:12×6×28或72×28
(3)估算版式结果。
一般情况下,学生把72看成70、28看成30来估算。
即:70×30=2100
(4)小结:一般情况,估算时是根据“四舍五入”法把数据估算成整十、整百的数,方便计算。
三、课堂活动
课文第34页“练一练“的第1题。
题中要求估计一张报纸一个版面的字数,学生有多种方法,可以将报纸折一折或圈出一块,在知道这一块的字数的基础上再得到整版的字数,也可以数一数某一行的字数与总行数,然后相乘得到整版的字数。
四、巩固练习
课文第34页“练一练”的第2-4题。
会计实习心得体会最新模板相关文章: