一份出色的教案在今后的教学道路上起到非常重要的作用,教案一定要注意掌握好教学节奏写作才行,360好工作网小编今天就为您带来了小学数学解比例教案8篇,相信一定会对你有所帮助。
小学数学解比例教案篇1
?教学目标】
1.使学生理解比例的意义,能应用比例的意义判断两个比能否成比例。
2.在比的知识基础上引出比例的意义,结合实例,培养学生将新、旧知识融会贯通的能力。
3.提高学生的认知能力。
?教学重点】比例的意义。
?教学难点】找出相等的比组成比例。
?教学方法】引导法。
?学习方法】自主探究。
?教具准备】ppt课件
?教学过程】
一、旧知铺垫
1.什么是比?
(1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。
(2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。
2.求下面各比的比值。
12 :16 1/3 :2/5 4.5 :2.7 10 :6
二、探索新知
1.用ppt课件出示课本情境图。
(1)观察课本情境图。(不出现相片长、宽数据)
①说一说各幅图的情景。②图中图片有什么相同之处和不同之处?
(2)你知道这些图片的长和宽是多少吗?
(3)这些图片的长和宽的比值各是多少?
a.6 ∶4= b.3∶2= c.3∶8 =
d.12∶8= e.12∶2=
(4)怎样的两张图片像?怎样的两张图片不像?
①d和a两张图片,长与长、宽与宽的比值相等,12∶6=8∶4,所以就像。 ②a长与宽的比是6∶4,b长与宽的比是3∶2,6∶4=3∶2,所以就也像。
2.认一认。
图d和图a两张图片,长与长、宽与宽的比值相等,图a和图b两张图片长和宽的比值相等。
板书:12∶6=8∶4 6∶4=3∶2
(5)什么是比例?
板书:表示两个比相等的式子叫做比例。
“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备??
么条件?因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”
比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。
(6)比较“比”和“比例”两个概念。
上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
(7)找比例。
在这四副图片的尺寸中,你还能找出哪些比可以组成比例?学生猜想另外两副图片长、宽的比值。求出副图片长、宽的比值,并组成比例。
如:3∶2 =12∶8 6∶4= 12∶8
3.右表是调制蜂蜜水时蜂蜜和水的配比情况,根据比例的意义,你能写出比例吗?
图片已关闭显示,点此查看
(1)什么样的比可以组成比例?
(2)把组成的比例写出来。
(3)说一说你是怎么写的,一共可以写多少个不同的比例。
三、课堂练习
1.⑴分别写出图中两个长方形长与长的比和宽与宽
的比,判断这两个比能否组成比例。
⑵分别写出图中每个长方形与宽的比,判断这两个
比能否组成比例。
图片已关闭显示,点此查看
2.哪几组的两个比可以组成比例?把组成的比例写出来。15∶18和30∶36 4∶8和5∶20 1/4∶1/16和0.5∶2 1/3∶1/9和1/6∶1/18
四、课堂小结。
(1)什么叫做比例?(2)一个比例式可以改写成几个不同的比例式?
?板书设计】 比例的认识
12∶6 = 8∶4
内项
外项
表示两个比相等的式子叫做比例。
小学数学解比例教案篇2
教学目标:
1.使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,
2.使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。
3.培养学生的判断分析推理能力。
教学重点:
使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题
教学难点:
学生通过分析应用题的已知条件和所求问题,确定那些量成什么比例关系,并利用正反比例的意义列出等式。
教学过程:
一、旧知铺垫
1.下面各题两种量成什么比例?
(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从甲地到乙地,行驶的速度和时间。
(3)每块地砖的面积一定,所需地砖的块数和所铺面积。
(4)书的总本数一定,每包的本数和包装的包数。
过程要求
①说一说两种量的变化情况。
②判断成什么比例。
③写出关系式。
2.根据题意用等式表示。
(1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。
(2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。
二、创设情境引入内容
1.出示例5
画面上张大妈与李奶奶的对话让我们知道了哪些数据?你能提出什么问题?
学生回答后引出求水费的实际问题。
你们学过解答这样的问题吗?能不能解答?让学生自己解答,交流解答的方法。
引入:这样的问题可以用应用比例的知识来解答,我们今天就来学习用比例的知识进行解答。
出示以下问题让学生思考和讨论
①问题中有哪两种量?
②它们成什么比例关系?你是根据什么判断的?
③根据这样的比例关系,你能列出等式吗?
明确
因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
学生讨论交流
演示解题过程:设未知数,根据正比例的意义列出方程,接着解比例求出未知数。让学生检验所求的未知数x是否合乎题意。检验的方法是把求出的数代入原等式(即方程),看等式是否成立。把求出的16代入等式,左式==1.6,右式==1.6,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。
问题:王大爷家上个月的水费是19.2元,他们家上个月用多少吨水?
要求学生应用比例的知识解答,然后交流。通过订正、交流,使学生明确条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了。
2.出示例题6的场景。
同样先让学生用已学过的方法解答,然后学习用比例的知识解答。
师:想一想,如果改变题目的条件和问题该怎样解答?
出示以下问题让学生思考和讨论
①问题中有哪两种量?
②它们成什么比例关系?你是根据什么判断的?
③根据这样的比例关系,你能列出等式吗?
注意启发学生根据反比例的意义来列等式,使学生进一步掌握两种量成反比例的特点和解决含反比例关系的问题的方法。
让学生演示解题过程,集体修正。
3.完成做一做,直接让学生用比例的知识解答
问题:对照两题说一说两道题数量关系有什么不同,是怎样列式解答的。
总结应用比例知识解答问题的步骤
(1)分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例。
(2)依据正比例或反比例意义列出方程。
(3)解方程(求解后检验),写答。
小学数学解比例教案篇3
教学目标:
1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。
3.结合丰富的事例,认识正比例。
教学重点:
1、结合丰富的事例,认识正比例。
2、能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学难点:
能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学用具:课件
教学过程:
一、 课前预习
预习书19---21页内容
1、填好书中所有的表格
2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?
3、把不理解的内容用笔作重点记号,待课上质疑解答
二、展示与交流
活动一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一:
1、 观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?
说说从数据中发现了什么?
3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。
说说你发现的规律。
(二)情境二:
1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2、请把下表填写完整。
3、从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(三)情境三:
1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2、把表填写完整。
3、从表中发现了什么规律?
应付的钱数与质量的比值(也就是单价)相同。
4、说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
5、正比例关系:
(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。
(2)购买苹果应付的钱数与质量有什么关系?
6、观察思考成正比例的量有什么特征?
一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。
(四)想一想:
1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2、小明和爸爸的年龄变化情况如下:
小明的年龄/岁67891011
爸爸的年龄/岁3233
(1)把表填写完整。
(2)父子的年龄成正比例吗?为什么?
(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再集体汇报
在老师的小结中感受并总结正比例关系的特征。
小学数学解比例教案篇4
教学目标:
1、通过实践活动,理解反比例的意义,并能根据反比例的意义,正确地判断两种相关联的量是否成反比例;
2、通过小组间的合作学习,培养学生的合作意识、参与意识,训练其观察能力及概括能力;
3、利用多媒体动画的演示,让学生体验到反比例的变化规律。
教学重点:感受反比例的变化,概括反比例的意义;
教学难点:正确判断两种相关联的量是否成反比例;
教学准备:20支铅笔、一个笔筒;相关课件;学生分小组(每组一份观察记录单)
每次拿的支数
10
5
4
2
1
拿的次数
总支数
教学过程:
一、复习
1、什么叫做“成正比例的量”?
2、判断两种量是否成正比例关键是什么?
3、练习:课本表中的两种量是不是成正比例?为什么?
二、小组协作 概括“成反比例的量”的意义
(一)活动??
师:好,现在请同学们拿出课前准备的学具,以小组为单位,动手操作,按要求认真填写观察记录单。看哪个组完成的又快又好!
1、学生汇报观察记录单的填写结果。
2、引导观察:在填、拿的过程中,你发现了什么?
3、师:你能根据表格,写出这三个量的关系式吗?
4、小结:通过刚才的活动,我们发现每次拿的支数变化,拿的次数也随着变化,但每次拿的支数和拿的次数的积即总支数总是一定的。
5、揭示反比例的意义(阅读课本,明确反比例关系)
6、如果用x、y 表示两种相关联的量,用k表示积,反比例关系式怎样表示?
(二)活动二:(例3)
1、课件出示例3,指名读题,学生独立完成
2、总结归纳出正比例和反比例的相同点和不同点
三、强化练习 发展提高
1判定两个量是否成反比例,主要看它们的( )是否一定。
2全班人数一定,每组的人数和组数。
( )和( )是相关联的量。
每组的人数×组数=全班人数(一定)
所以( )和( )是成反比例的量。
3判断下面每题中的两种量是不是成反比例,并说明理由。
糖果的总数一定,每袋糖果的粒数和装的袋数。
煤的总量一定,每天的烧煤量和能够烧的天数。
生产电视机的总台数一定,每天生产的台数和所用的天数。
长方形的面积一定,它的长和宽。
4机动练习:
想一想:铺地面积一定时,方砖边长与所需块数成不成反比例?为什么?
四、全课总结
1、你能不能结合日常生活举一些反比例的例子。
2、今天这节课,你有什么收获?还有什么遗憾?
小学数学解比例教案篇5
教学时间:
3月19日
教学内容:
p47 – 49
教学目标:
1、使学生理解比的意义,了解比的各部分名称;
2、使学生理解比值的概念,能正确求比值。
教学过程:
一、 复习准备:
1、 列式计算。
⑴、 甲数是50,乙数是35,甲数比乙数多几?乙数比甲数少几?
⑵、 计算机小组有男生5人,女生有4人,男生人数是女生的几倍?女生人数是男生的
几分之几?
⑶、 一辆汽车3小时行驶180千米,这辆汽车每小时行驶多少千米?
2、 引入。
在日常生活中,经常需要进行数量间的比较,这种比较有时采用减法计算,如(1),有时采用除法计算,如(2)、(3)。采用除法进行两数比较时,我们还用“比”来表示两数间的关系。(揭题)
二、教学新课:
1、 比的意义。
刚才说用除法计算两数量间的关系,还可以用“比”来表示,那么什么叫做比呢?怎样用比来表两数量之间的关系呢?现在我们就来学习讲座这个问题:
⑴、 看书自学:课本第48 – 49页,思考:什么叫做“比”?
⑵、 自学反馈:
①、 男生人数是女生的几倍,也可以说成是谁和谁比,是几比几?
②、 女生人数是男生的几分之几,也可以说成是谁和谁比,是几比几?
③、 汽车每小时的速度,也可以说成是谁和谁比,是几比几?
⑶、 归纳意义;
通过上面的例子,你发现了什么?(比的意义)
⑷、 巩固练习:
①、某四间有男工32人。女工18人;
男工人数是女工人数的几倍?怎么算?也可以怎么说?
女工人数是男工人数的几分之几?怎么算?也可以怎么说?
女工人数是车间总人数的几分之几?怎么算?也可以怎么说?
②、练一练 第1题
2、 比的各部分名称是怎样规定的?比的读法、写法又是怎样的?请继续自学。
5: 4读作 5比4
前项 比号 后项
问:什么叫比值?怎样求比值。
1 5 : = 1??比值 4
3、 试一试
根据题意写出比,并求出比值。
⑴、 李强植树6棵,张明植树5棵;
a.写出李强和张明植树棵数的比,比值是多少?
b.写出张明和李强植树棵数的比,比值是多少?
⑵、 3支圆珠笔的总价是6元,写出圆珠笔总价和支数的比,比值是多少?这里的比值
表示什么?
反馈小结:
1 前两个比的结果所表示的都是倍数关系:李强植树棵数是张明的1 倍,张明植5 5 树棵数是李强的 ;而一个比的结果是一个新的量,即圆珠笔的单价,想一想,你也6
能举出这样的例子来吗?
三、练习
读出下面各个比,并求出比值:
1 2 120 :71 :11.6:1.8 55
四、小结:
今天你学会了什么?
比和比值有什么区别?
一、 作业:
p493~5
教学反思:
“比”的这部分知识虽说是学生第一次遇到,但对其认识对六年级的学生来说并不是很困难,所以我在教学时放手让学生自学,老师只是从中提出几个问题,作为反馈调查,或起到加深理解的“画龙点睛”之笔。从学生的学习情况来看,大部分学生能够自己学明白这部分内容,但个别学生没有弄懂。
上课之前我对这几个学习能力较弱的学生是有所关注的,把最容易回答的问题留给他们,甚至让他们在课堂上“拾人牙慧”,但还是有两名学生连别人刚说
过的话也复述不出,对她们的学习得采用低难度、多重复的方法。
小学数学解比例教案篇6
数学教案设计是数学课堂教学活动的一个重要组成部分,下面要为大家分享的就是比和比例教案,希望你会喜欢!
教学目标:
培养学生的观察能力、判断能力。
学法引导:
引导学生通过观察、讨论、计算、探究、验证等方法研究比例的意义和比例的基本性质。
教学重点:
比例的意义和基本性质。
教学难点:
应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教学过程:
一、回顾旧知,复习铺垫
同学们,今天数学课上有很多有趣的问题等待你们来探索和发现,希望大家都能有收获。大家有没有信心?
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把学生举的例子板书出来
2、老师也准备了几个比,想让同学们求出他们的比值,并根据比值分类。
2:3 4.5:2.7 10:6
80:4 4:6 10:1/2
提问:你是怎样分类的?
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:两个比相等4.5:2.7=10:6 12:16=3/5:4/5 80:4 =10:1/2)像这样的式子叫做比例。这就是这节课我们要学习的内容。(板书课题:比例的意义)
二、引导探究,学习新知
1、教学比例的意义。
(1)教学例题。
先出示教材上的四幅图,请同学说说图的内容。找一找四幅图中有什么共同的东西。再出示四面国旗长、宽的尺寸。
师:选择其中两面国旗(例如操场和教室的国旗),请同学们分别写出它们长与宽的比,并求出比值。
提问:根据求出的比值,你发现了什么?(两个比的比值相等)
教师边总结边板书:因为这两个比的比值相等,所以我们也可以写成一个等式
2.4∶1.6 = 60∶40 像这样由两个相等的比组成的式子我们把它叫做比例。
师:在图上这四面国旗的尺寸中,还能找出哪些比来组成比例?
比例也可以写成分数形式:4.5/2.7= 10/6请同学们很快地把黑板上我们写出的比例,改写成分数形式。
(2)引导概括比例的意义。
同学们,老师刚才写出的这些式子叫做比例,那么谁能用一句话把比例的意义总结出来呢?(根据学生的回答板书比例的意义。)
(3)判断。举一个反例:那么2:3和6:4能组成比例吗?为什么?
“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?(看两个比的比值是否相等)如果不能一眼看出两个比是不是相等的,怎么办?”(根据比例的意义去判断)
根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比比值求出来以后再看。
(4)比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
(5)反馈训练
用手势判断下面卡片上的两个比能不能组成比例。
6:3和12:6 35:7和45:9
20:5和16:8 0.8:0.4和4:2
2、教学比例的基本性质。
(1)自学课本,了解比例各部分的名称,理解各部分的名称与各项在比例中的位置有关。
( 2 )检查自学情况:指名说出黑板上各比例的内外项。
(3)探究比例的基本性质。
师:在比例的内外项之间,存在着一个有趣的特性(比例的基本性质),大家想不想研究?(板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书
两个外项的积是4.5×6=27
两个内项的积是2.7×10=27
“你发现了什么?”(两个外项的积等于两个内项的积。)板书:4.5×6=2.7×10
(4)计算验证,达成共识。
师:“是不是所有的比例都有这样的性质呢?”让学生分组计算判断前面的比例式,发现所有的比例式都有这个共同的规律。
(5)引导小结比例的基本性质。
师:通过计算,大家,谁能用一句话把这个规律概括出来?
教师归纳并板书:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。
师:“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着4.5/2.7=10/6) “这个比例的外项是哪两个数呢?内项呢?”
学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。
(6)判断。前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。
反馈训练:应用比例的基本性质判断3:4和6:8能不能组成比例。
三、巩固深化,拓展思维。
(一)判断
1.两个比可以组成一个比例。 ( )
2.比和比例都是表示两个数的倍数关系。 ( )
3.8:2 和1:4能组成比例。 ( )
(二)、用你喜欢的方式,判断下面那组中的两个比可以组成比例。把组成的比例写出来。
(1) 6:9和 9:12 (2)14:2 和 7:1
(3) 0.5:0 .2和 5:2 (4)0.8:0.4和0.3:0.6
(三)填空
(1)一个比例的两个外项互为倒数,则两个内项的积是( ),如果其中一个内项是2/3,则另一个内项是(),如果一个比例中,两个外项分别是7和8,那么两个内项的和一定是()。
(2)如果2:3=8:12,那么,()x()=()x()。
(3)写出比值是4的两个比是()、(),组成比例是()。
(4)如果5a=3b,那么,a:b=():( )
(四)下面的四个数可以组成比例吗?如果能,能组成几个?把组成的比例写出来。
2 、3 、4和6
拓展题:猜猜括号里可以填几?
5:2=10:( ) 2:7=( ):0.7 1.2:2.5=( ):25
四、全课小结,提高认识
通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
五、布置作业。
练习六2、3、5
小学数学解比例教案篇7
设计说明
“反比例”是在学生学习了“比和比例”和“正比例”的基础上进行教学的。本着“学生是学习的主体”的理念,在本节课的教学中,最大限度地为学生提供了自主探究的机会。
1.借助定义、实例,渗透函数思想。
教学伊始,借助正比例的意义和生活实例,使学生进一步体会函数思想,充分理解成正比例关系的两种量的比值不变的特点,为学生探究成反比例关系的两种量之间的关系以及理解反比例的意义和特点奠定良好的基础。
2.借助具体情境,在观察、讨论中发现规律。
教学中,通过具体情境,引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度=水的体积”这一规律,使学生通过自己的努力,归纳、概括出反比例的意义及特点。
3.借助已有的学习经验总结反比例关系式。
因为正、反比例体现的都是两种相关联的量之间的关系,且正比例关系表达式学生已经掌握,所以在总结反比例关系表达式时,教师要引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。
课前准备
教师准备 ppt课件
学生准备 玻璃杯 直尺 水 实验记录单
教学过程
⊙复习引入
1.复习。
课件出示:一个圆柱形水箱,底面积是0.78平方米,高是1.2米,这个水箱能装水多少立方米?
(1)引导学生独立解决问题。
(2)提问:你是根据什么公式进行计算的?
预设
生:圆柱的体积=底面积×高。
(3)师追问:圆柱的体积、底面积和高之间还有怎样的数量关系呢?在什么情况下其中的两种量成正比例关系?
预设
生1:底面积=圆柱的体积÷高,高=圆柱的体积÷底面积。
生2:如果底面积一定,圆柱的体积与高就成正比例;如果高一定,圆柱的体积与底面积就成正比例。
2.引入课题。
如果圆柱的体积一定,那么底面积与高又成怎样的关系呢?这就是本节课我们要学习的内容。(板书课题:反比例)
设计意图:通过复习有关圆柱的体积问题以及列举圆柱的体积、底面积和高之间的关系,在培养学生思维完整性的同时,为新知的学习作铺垫。
⊙探究新知
1.在具体情境中初步感知成反比例关系的量。
(1)课件出示教材47页例2,引导学生结合问题进行观察。
师:观察情境图,理解图意后,观察下表,先一行一行地观察,再一列一列地观察,并思考下面的问题。
杯子的底面积与水的高度的变化情况如下表。
杯子的底面积/cm2
10
15
20
30
60
…
水的高度/cm
30
20
15
10
5
…
①表中有哪两种量?
②水的高度是怎样随着杯子底面积的大小变化而变化的?
③相对应的杯子的底面积与水的高度的乘积分别是多少?
(2)学生思考后在小组内交流。
(3)全班交流。
预设
生1:有杯子的底面积和水的高度这两种量。
生2:杯子的底面积增大,水的高度降低;杯子的底面积减小,水的高度升高。
生3:相对应的杯子的底面积与水的高度的乘积都是300,是一定的,也就是杯子的底面积×水的高度=水的体积(一定)。
(4)明确什么是成反比例的量。
因为水的体积一定,所以水的高度随着杯子的底面积的变化而变化。杯子的底面积增大,水的高度反而降低;杯子的底面积减小,水的高度反而升高。但是无论怎样变化,杯子的底面积和水的高度的乘积总是一定的,所以我们就把杯子的底面积和水的高度这两种量叫做成反比例的量,它们的关系叫做反比例关系。
小学数学解比例教案篇8
教学内容:
教科书第35页的第l一3题,练习九的第l一3题。
教学目的:
1.使学生明确。比例”和“比”、“比值”等概念之间的联系和区别。
2,使学生进一步提高对比例、正比例、反比例的意义和判断的理解和掌握,培养学生的分析问题和解决问题的能力。
3.加深对比例尺的认识,会求比例尺、图上距离和实际距离。
教具准备:投影仪、投影片、小黑板。
教学过程:
一、复习;;比”和“比例”
1.复习整理。
教师:这一单元我们学习了比例的知识,请同学们举例说一说什么叫做比?什么叫做比例?比和比例有什么区别?
随着学生的回答,教师板书如下表。
指出:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等,有四项:
2.练习。
用小黑板出示下面的题让学生完成。
(1)六年级一班有男生24人,女生20人。六年级一斑男生和女生人数的最简单的整数比是( )。
(2)六年级一班男生和女生人数的比是6:5。男生人数和全班人数的比是( ),女生人数和全班人数的比是( )。
(3)六年级一班男生和女生人数的比是6:5。男生有24入,女生有( )人。
二、复习解比例
1.完成第35页的第2题。
指名回答什么叫解比例,解比例要根据什么性质。
接着以 : =l :x为例,复习解比例的过程,使学生进一步明确:在解比例时,如果有带分数,要先把带分数化成假分数,然后利用比例的基本性质,把比例式变为含有未知数的等式来解。
然后让学生完成第2题的其余习题。
三、复习正比例、反比例
用投影片逐一出示下面问题,让学生回答。
1.什么叫成正比例的量和正比例关系?
2.什么叫成反比例的量和反比例关系?
3,正比例和反比例有什么联系和区别?
学生回答,教师填写小黑板上的表。
然后教师出示下面两个表,让学生根据表中两种量中相对应的数的关系,判断它们成什么比例,并说明理由。
使学生明确:要判断两个相关联的量是成正比例还是反比例,要看相对应的两个数的商或积是不是一定,如果积一定说明这两个量成反比例,如果商一定说明这两个量成正比例。如第二个表,通过计算,可以看出上、下两个相对应的数的商一定,也就是说,这个三角形的高的 一定,因而高也一定,所以三角形的面积与底边成正比 例。
四、课堂练习
完成练习九的第1—3题。
1.第1题,学生独立完成,集体订正。在订正第(4)小题时,可以先让学生说说12的约数有哪?然后说出自己用选出的四个约数组成的比例是什么。教师把学生说出的比慎写出来。订正第(6)小题时,要注意检查学生是否把图上距离和实际距离的单位续一了。
2,第2题,除第(2)、(7)小题教师要提示外,其余各题由学生自己判断,第(2)行驶的路程
小题,教师可以先说明 =周长,再让学生判断。第(7)小题,可以先让几个学生说说自己的体重和身高,教师把数据记下来,再让学生判断。使学生知道:人的体重和身高有一定的关系,一般人的体重是随着身高而增加的,但体重和身高不成正比例关系。
3.第3题,教师向学生说明:这题要求图上长方形的长、宽和地基的实际面积。
会计实习心得体会最新模板相关文章: