360好工作网 >述职报告

苏教版六年级数学下册教案7篇

认真写好教案可以提高我们对教学资源的利用效率,使教学内容更加丰富和多样化,教案的准备过程可以帮助我们更好地调整教学步骤和方法,提高教学的连贯性和流畅性,360好工作网小编今天就为您带来了苏教版六年级数学下册教案7篇,相信一定会对你有所帮助。

苏教版六年级数学下册教案7篇

苏教版六年级数学下册教案篇1

教学目标

1.复习正反比例的意义,练习判断两种相关联的量成正比例还是成反比例。

2.复习用正比例方法解答应用题。

3.复习用反比例方法解答应用题。

教学重点和难点

判断两种相关联的量成什么比例;确定解答应用题的方法。

教学过程设计

(一)复习数量关系

判断两种相关联的量成不成比例,确定解答应用题的方法。

1.被除数一定,除数和商。

2.一条路,已修的和未修的。

3.梯形的上、下底长度一定,梯形的面积和它的高度。

4.每块砖的面积一定,砖的块数和铺地面积。

5.挖一条水渠,参加的人数和所需要的时间。

6.从甲地到乙地所需的时间和所行走的速度。

7.单位面积一定,播种面积和总产量。

8.时间一定,速度和距离。

9.订阅《北京儿童》的份数和所需钱数。

(二)复习应用题

1.某工厂八月份计划造一批机床,开工8天就造了56台,照这样速度到月底可生产多少台?

第一步,先找对应关系:

8天56台

31天?台

第二步,判断成什么比例?(每天生产的台数一定,成正比例。)

请你在对应关系的旁边写上正字,决定用正比例方法做。

解 设到月底可生产x台。

x=217

答:照这样速度月底可生产217台。

2.一批纸张,钉成20页一本的练习本,能钉600本。如果钉成24页一本的练习本,能钉多少本?

第一步,先找对应关系:

20页600本

24页?本

第二步,判断成什么比例?(纸张总页数一定,成反比例。)

请你在对应关系的旁边写上反字,决定用反比例方法做。

解 钉成24页一本的练习本,可钉x本。

24x=20600

x=500

答:如果钉成24页一本的练习本可钉500本。

学生独立地用老师教的分析应用题的思路和方法在本上做两道题。

(1)火车3小时行135千米,用同样的速度5小时可以行多少千米?

(2)有一批砖,25人去搬,6小时搬完,如果30人去搬,需要多少小时搬完?

(三)练习解答两步的比例应用题

1.李涛读一本书,每天读6页,30天可以读完。如果每天多读4页,多少天可以读完?

黑板上的对应关系变成:

解 设x天读完。

(6+4)x=630

10x=630

x=18

答:18天可以读完。

2.在第1题的基础上,改变问题。

李涛读一本书,每天读6页,30天可以读完,如果每天多读4页,提前几天读完?

对应关系:

解 设如果每天多读4页,x天读完。

(6+4)x=630

10x=630

x=18

30-18=12(天)

答:提前12天读完。

(指导学生分析、比较。)

以上两道题,什么发生了变化?什么没有变?(条件和问题发生了变化,使原来的题复杂了一步,但用反比例解的方法没有变。)

练习(学生独立分析,做题。)

1.一辆汽车从甲城开往乙城,3小时行驶105km。用同样的速度又行驶了1.2h到达乙城,甲城到乙城有多少千米?

解 设甲城到乙城有x千米。

3x=105(3+1.2)

x=147

答:甲城到乙城有147km。

2.光明乡有144公顷水稻,5天收割了90公顷,照这样计算,剩下的.几天可以收割完?

解 设剩下的x天可以收割完。

90x=554

x=3

答:剩下的3天可以收割完。

(再用间接设的方法做两道题。)

1.纺织厂的织布车间过去每人看16台织布机,每班需要42人,现在改进操作方法,每人看24台。每班可以节约几人?

1642=24x

42-x

2.某机器厂原计划每天生产机器48台,15天可以完成任务,现在要12天完成任务,每天应增产多少台?

12x=4815

x-48

(四)总结

这节课我们主要复习了解正、反比例应用题的分析、思考方法。拿到应用题不要急于先做,要先读题,找出对应关系,判断是正比例还是反比例,就可以正确解答了。

课堂教学设计说明

解答正、反比例应用题是有其独特的思考方法的,所以在教案的设计上重点放在指导、解答正反比例应用题的思考方法上。

第一层次,先做判断练习,判断两个相关联的量是否成比例,成什么比例,因为这是正确解答正反比例应用题的基础。

第二层次,进行最基本的正反比例应用题的训练,着重训练学生怎样找对应关系,如何正确判断,然后再动笔做题,目的是培养学生良好的学习习惯和学习方法。

第三层次,进行间接设的正、反比例应用题的训练,目的是在原来分析问题的基础上,使学生的思维更高一步。

苏教版六年级数学下册教案篇2

教学目标:

1.学生加深对分数和百分数的认识,进一步理解分数的基本性质以及分数与除法的关系,进一步掌握小数、分数和百分数的互相改写,以及求百分数的方法。

2.学生经历知识整理和应用的过程,进一步了解分数、百分数相关知识之间的内在联系,提高观察比较、分析判断能力和解决问题的能力,进一步发展数感。

3.学生进一步体会分数和百分数在日常生活中的应用以及作用,增强数学应用意识;感受数学学习的乐趣,树立学好数学的信心。

重点难点:

加深理解分数、百分数的意义。分数、百分数在实际生活中的应用。

教学过程:

一、揭示课题

谈话:前几节课我们一起复习了整数和小数的相关知识,这节课我们要对分数和百分数的相关知识进行整理和复习。

通过复习,要进一步认识分数和百分数的意义,体会它们之间的联系与区别,并能运用分数和百分数的相关知识解决一些实际问题。

二、回顾整理

1.回顾讨论。

提问:你了解分数和百分数的哪些知识?请大家联系下面的问题自己回顾整理,并且在小组里交流。

呈现以下四个问题

(1) 什么叫分数?什么叫百分数?

(2) 分数和除法有什么联系?请你举例说明。

(3) 分数的基本性质是什么?你能用它来说明小数的性质吗?

(4) 小数、分数和百分数怎样互相改写?

让学生围绕上面四个问题先独立思考,再在小组里讨论、交流。

2.组织交流,回答上面四个问题。

三、基本练习

1.做练习与实践第1题。

学生独立填写后指名口答,说明理由。

强调:分数是看平均分成多少份,表示这样的几分;小数是看表示的.十分之几、百分之几、千分之几百分数是看这个数量占整体的百分之几。

2.做练习与实践第2题。

学生填写在书上,然后集体校对,让学生说说思考过程。

追问:第(2)题把一根绳子平均分成8段,为什么两次填写的结果不同?

3.做练习与实践第3题。学生独立填写。

集体交流,让学生说说是怎样想的,说一说每个百分数表示的意义。

4.做练习与实践第5题。

学生先尝试填写,再集体交流。

提问:这两组数分别会越来越接近几?

指出:这两组数按规律可以无限地填下去,这样填写第一组数会越来越接近1,第二组数会越来越接近0.

四、应用练习

1.做练习与实践第6题。

学生读题,理解题意,先独立估计。

提问:估计哪块花圃种玫瑰的面积所占的百分比最大?说说理由。

指出:估计时,可以先想出相应的分数,再估计大小。

学生写出相应的百分数,并交流是怎样想的,再和估计的比一比。

2.做练习与实践第7、8题。

学生读题后独立解答,再集体交流。

提问:你能说说种子发芽率的具体含义吗?折扣表示什么?发芽率和折扣各是怎样求的?

3.做练习与实践第9题。

学生读题后,提问:你能根据所给信息,在图中表示出李华家上个月的支出情况吗?先独立思考并在图中表示。

五、课堂总结

1.交流小结。

提问:这节课我们复习了哪些内容?你有什么收获或体会?

2.布置作业。

课堂作业:练习与实践第4题,第9题第(2)小题,第10题。

苏教版六年级数学下册教案篇3

教学内容:

课本第78——79页例2和“练一练”,练习十三第1、2题。

教学目标:

1、让学生用分数乘法和减法解决一些稍复杂的实际问题(不超过两步),进一步积累解决问题的策略,增强数学应用的.意识。

2、发展思维、提高分析问题、解决问题的能力,进一步体会数学知识之间的内在联系。

教学重难点:

用分数乘法和减法解决一些稍复杂的实际问题。

课前准备:

课件

教学过程:

一、谈话导入

谈话,并出示例题。

学生自由读题,了解题意。

二、探索新知

1、出示例2,问:从题中你知道了什么?要我们解决什么问题?

说出题目的已知条件和所求问题。

谈话:为了使已知条件之间、条件和问题之间的关系更清楚,可以先画线段图。

教师一边讲解一边示范画线段图的过程,学生和教师一起操作,完善线段图。

2、问:要求女运动员有多少人,可以先算什么?在图上指出来。

各自列式解答,指名板演,期于学生同时列式解答。

集体评讲。

探讨其他算法

设问:想一想还可以怎样算?

学生思考后交流。教师适当评讲。

三、巩固深化

1、完成“练一练”第1题。

让学生先说出自己的想法,然后再列式解答。

集体评讲。

2、完成“练一练”第2、3题。

学生弄清题意后独立解答。(要求学生画出线段图)

集体评讲。

四、课堂总结

通过今天的学习,你有什么收获呢?

五.布置作业

练习十三第1、2题。

教学反思:

苏教版六年级数学下册教案篇4

教学目标

1.使学生理解、掌握四则运算的五大定律和两个性质。

2.掌握积、商的变化规律。

3.能运用这些定律、性质和规律进行简便计算,提高计算能力。

教学重点

运用定律、性质和规律进行简算。

教学难点

如何灵活运用。

教具与学具准备

投影仪、投影片、判断牌、选择牌。

教学过程设计

(一)揭示课题

提问:请同学们回忆一下,我们在学习整数四则运算时,已经学过了哪些运算定律?哪些运算性质?(指名回答)

(板书)

加法交换律 减法的性质

结合律

乘法交换律 除法的性质

结合律

分配律

很好,今天我们就来复习这些定律和性质及其应用。(板书:四则运算的定律和性质复习)

(二)复习五大定律

1.提问:这些定律用字母怎样表示?用语言怎么叙述?(学生边回答教师边板书字母公式。)

2.判断下面应用运算定律的过程有没有错误,没错举,有错举,并指出错误所在,改正过来。

投影出示:

(1)(43+25)4=434254

(2)(700+1)68=70068+68

(3)153(220+57)=153220+57

(4)45+(54+55)=54+(45+55)

(5)638+378=(63+37)(8+8)

3.小结:我们运用这些定律时要注意正确。

(三)复习两大性质

1.提问:我们还学习了哪些运算性质?你能把它们用字母表示出来吗?说说它们表示的意思。(学生边说老师边板书。)

减法运算性质:a-(b+c)=a-b-c

除法运算性质:(a+b)c=ac+bc(c0)

强调除法性质中的a,b都要能被c整除,且除数c不能是0。

2.做一做:在等号后面的横线上填数,○里填运算符号。

(1)157-(27+68)=157-27○_________

(2)3214-537-463=3214-(537○463)

(3)(945+63)9=945________○63

(4)156102=156(100○_______)

指名一人做胶片,其他同学做印好的练习片子,然后投影说结果,并说明根据什么性质。

(四)积、商的变化规律

1.提问:我们在学习多位数乘、除法时,还学过积、商的.哪些变化规律?谁还记得?

(1)投影:在乘法里,如果一个因数扩大10倍,另一个因数不变,那么积就________倍;如果一个因数缩小100倍,另一个因数不变,那么积就________倍;或者,一个因数扩大10倍,另一个因数缩小10倍,积________。

想一想:这是什么道理?(是乘法交换律和结合律的具体体现。)

投影说明:

(a10)b=a10b=ab10=(ab)10

(a100)b=a100b=ab100=(ab)100

(a10)(b10)=a10b10

=ab1010=(ab)1=ab

(2)投影回答:在除法里,被除数和除数___________扩大(或缩小)___________的倍数,_______________。

问:你能联系乘、除法的关系和乘法运算定律来说明其中的道理吗?(根据除法是乘法的逆运算关系,这也是乘法运算定律的具体体现。)

说明:整数四则运算的定律和性质,对小数四则运算同样适用。(只有除法的性质略有变化,a,b都要能被c除尽。)

2.练习。

口答:

(1)一个因数扩大100倍,另一个因数扩大10倍,原来的积就____________倍。

(2)把除数扩大100倍,要使商不变,被除数应该____________倍。

(3)在下面的横线上填上适当的数,○里填运算符号。

①3.6+0.85+6.4+0.15=(_______○______)○(______○_______)

②4.53-1.64-0.36=_____○(______○0.36)

③7.85.3+7.84.7=______○(_____○_____)

④4.20.7+2.80.7=(______○______)○______

(五)课堂总结

我们掌握四则运算的五大定律和两个性质主要是为了应用,使计算简便,而且要灵活运用。

(六)课堂练习

1.选择题:(投影出示,学生举选择牌。)

(1)被减数不变,减数增加5,得到的差 [ ]。

①增加5

②减少5

③不变

(2)对于2548,小明想了以下几种计算方法,分别应用了( )知识。

2548=25(40+8)=2540+258=1000+200=1200

应用了( )知识。

2548=25(68)=6(258)=6200=1200

应用了( )知识。

2548=25(50-2)=2550-252=1250-50=1200

应用了( )知识。

2548=(254)(484)=10012=1200

应用了( )知识。

①积的变化规律 ②乘法交换律和结合律

③乘法结合律 ④乘法分配律

⑤乘法交换律

追问:哪种最简便?

2.简算,在片子上完成,指名两个同学用胶片做。

① 1.252.5645

=1.252.5(88)5

=(1.258)(2.585)

=10100=1000

② 5.80.7+0.420.07+407

=587+427+407

=(58+42+40)7=1407=20

集体在投影上订正。

(七)课堂总结

今天这节课我们上得很好。在今后的学习和实践中要注意应用我们所学过的定律和性质,使计算简便,提高效率。

课堂教学设计说明

四则运算的定律和性质是学生进行简便运算的依据。灵活地运用四则运算的定律和性质,不但能提高计算的速度,还能培养学生思维的灵活性。所以在复习中,注重学生对四则运算定律和性质的理解、记忆,再加以灵活运用,从而达到培养学生计算能力的目的,这是非常必要的。因此,在复习中首先要让学生搞清所学过的运算定律和性质有哪些,分别用字母怎么表示,语言怎么叙述,达到全面巩固理解的目的。其间,分别插入适当判断、填空练习,以帮助学生理解及灵活运用。另外,利用积、商的变化规律培养学生思维的灵活性和深刻性,使学生在观察推导中理解积、商的变化规律实际上就是乘法运算定律的具体体现,同时,也为简便计算打开多种途径。然后,在学生全面掌握的基础上出现一组选择题,综合地培养学生运用定律和性质的能力,反馈面也扩展到全班,便于了解多数学生的情况。最后出示两道简算题,让每个学生动手动脑,以考查学生是否掌握了四则运算的定律,是否能灵活地运用。

苏教版六年级数学下册教案篇5

教学内容:

比例

第一课时

教学目标:

1、使学生在具体情境中初步理解图形的放大和缩小,学会利用方格纸把一个简单图形按指定的比放大或缩小。

2、使学生在观察、比较、思考和交流等活动中,感受图形放大、缩小在生活中的应用。

3、初步体会图形的相似,进一步发展空间观念。

重点难点:

1、理解图形的放大和缩小,能利用方格纸把一个简单图形按指定的比放大或缩小

2、学生在观察、比较、思考和交流等活动中,感受图形放大、缩小,初步体会图形的相似,进一步发展空间观念。

教学过程:

一、导入。

呈现例1图片在黑板上。

提问:把放大前后的两幅画相比,你能发现什么?

根据学生回答的情况,谈话导入:像刚才把一幅长方形画放大后,长方形的长和宽与原来相比,其中变化有什么规律?这就是我们今天要学习的内容。

板书课题:图形的放大和缩小

二、教学例1。

1、认识图形的放大

出示例1中两幅图片长和宽的数据。

提问:两幅图的长有什么关系?宽呢?

组织学生先讨论,启发学生用不同的方法比较出两幅图的长和宽的关系:第二幅图的长是第一幅的2倍,宽也是第一幅的2倍;第一幅图和第二幅图长的比是2:1,宽的比也是2:1,等等。

指出:把图形的每条边放大到原来的2倍,就是把图形按2:1的比放大。

提问:刚才我们在电脑上操作时,把原来的一幅长方形按怎样的'比放大了?

2、认识图形的缩小。

谈话:我们可以把一个图形按一定的比放大,也可以把一个图形按一定的比缩小。 提问:如果要把第一幅图按1:2的比缩小,缩小后的长与宽各应是原来的几分之几?

各是多少厘米?

先在小组里说一说,再组织全班交流。

三、教学例21、出示例2,让学生读题

(1)提问:按3:1放大是什么意思?放大后的长、宽各是原来的几倍?各应画几格?

(2)学生画图,再展示、交流。

(3)让学生尝试在方格纸上画出缩小后的长方形,再展示各自画的图形,并交流思考的方法。

重点指导学生说说缩小后的长方形的长和宽应是原来的几分之几,各应画多少格。

2、讨论:把放大和缩小后的图形与原来的图形相比,你有什么发现?

让学生明确:放大和缩小后的图形与原来的图形相比,大小变了,但形状没变。(放大和缩小后的图形长与宽的比与原来图形的长和宽的比是完全一样的。)

3、教学试一试

先独立画出按2:1的比放大后的三角形,再让学生说一说自己是怎么画的?

提问:量一量,斜边的长也是原来的2倍吗?你发现什么?

小结:把三角形按2:1的比放大后,各条边的长都是原来的2倍。

四、巩固练习

1、做练一练

让学生按要求在方格纸上画出缩小后的图形,再让学生说一说是怎样画的,缩小后有关边的长度是原来的几分之几,各应画几格?

2、做练习六第1、2题。

第1题要引导学生具体分析相关图形边的长度,并完成填空,再组织交流。

五、全课小结。

什么是图形的放大和缩小。要遵循什么原则?放大和缩小后的图形与原来的图形有什么关系?

六、课堂作业 补充习题28-29页

苏教版六年级数学下册教案篇6

教学目标

1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。

3.培养学生的观察能力和概括能力。

教学重点和难点

1.正确理解倒数的意义及互为的含义。

2.正确地求出一个数的倒数。

教学过程设计

(一)激发兴趣,引出概念

1.投影。哪个同学和老师比赛?谁说得快?

师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)

2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。

板书:乘积是1 两个数

3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?

生:两个数分子、分母颠倒位置就可以了。

师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)

4.举例说明,什么叫互为倒数?

师:3是倒数这句话对吗?为什么?

你们说得对,谁能说出几组倒数?

同桌互相说,每人说两组。(指名说)

问:怎样判断他们说得是否正确?

生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于1,这两个数不是互为倒数。

5.思考:1的倒数是几?为什么?0有倒数吗?为什么?

板书:1的倒数是1。0没有倒数。

(二)求一个数的倒数

同学们已经掌握了倒数的意义,也能正确地判断出两个数是不是互为倒数。那么怎样找出一个数的倒数呢?

1.出示前面的投影,找特点。

观察互为倒数的两个数有什么特点,把观察到的结果同前后同学交流一下。

问:谁来说说你发现了什么?

生:互为倒数的两个数,是分子、分母交换了位置。

师:你们观察得很仔细。根据这一规律,你们试着做一做下面的题。

学生说老师板书:

3.同学们想一想,怎样求一个数的倒数?前后、左右的同学互相说一说。

谁来给同学们汇报一下?(2~3名)

板书:求一个数( )的倒数,只要把这个数的分子、分母调换位置。

问:老师为什么要空出一些地方?

生:0除外。

问:为什么要加上0除外?(板书:0除外。)

问:你们现在知道一上课时,老师为什么说得那么快了吗?奥秘在哪儿?你们已经知道了方法。如果给你一个数,你能很快写出它的倒数吗?比一比看。

4.课堂练习。

写出下面各数的倒数:

35的倒数是怎么想的.?

问:2的倒数是几? 10的倒数呢?怎样又对又快地写出一个自然数的倒数呢?

5.写出1.5的倒数,怎样做?

(三)课堂总结

我们学习了哪些知识?倒数的意义是什么?怎样判断两个数是不是互为倒数?怎样求一个数的倒数?还有什么问题?

下面我们一起做几道题,检验一个我们这节课的知识是否真正掌握了。

(四)巩固练习

1.投影。

问:怎么填得这么快,你是根据什么填的?

问:①谁能回答?

②你根据什么填的?

③为什么根据倒数的意义填?

看下一组题:

问:怎么填?根据什么?与(2)有什么不同?

师:所以做题时要认真审题,看清符号,千万不能出审题错误。

2.下面哪两个数互为倒数?(课本24页第2题做在书上,用线连接,投影订正。)

3.判断下面各题。对的举,错的举,并说明理由。

投影出示:

(1)乘积是1的两个数互为倒数。 ()

(2)2.5和0.4互为倒数。 ()

师:你们是怎么想的?

生:2.5和0.4乘积是1,所以是对的。

(3)因为1的倒数是1,所以0的倒数是0。 ()

问:错在哪里?

问:错在何处?

问:这道题错在哪了?

生:乘积是1的两个数互为倒数。这道题是3个数的乘积是1,所以错了。

4.游戏。

每个组第一个同学手里有一块小黑板,上面都有6个数字。每人写一个数的倒数,写完后传给你后面的同学。如果后面同学发现前面的题做错了,你可以改,再做下一题再向后传。最后一名同学做完后迅速把小黑板拿到前面来。哪一组又对又快做完,哪一组就是优胜。

评比表扬优胜,找出谁给前面的同学改了错。

(五)作业

课本24页第3,5,6题。

课堂教学设计说明

1.这节课的设计思想首先从如何激发学生的学习兴趣入手。一上课就采取了师生比赛填空的方法,使学生产生疑问:老师为什么说得那么快?有什么窍门?学生的兴趣一下子起来了,他们迫切地想听完这节课,解决他们心中的疑惑。这样,一上课就抓住了学生的心。在课的最后,又用小组比赛的形式设计练习,把课堂气氛推向了高潮。这样既检查了学生知识的掌握情况,又培养了学生的集体荣誉感。

2.这节课还注意充分发挥学生的主体作用。如,新授一开始,就让学生观察每道算式,找出共同点,引出倒数的意义。而后又让学生自己观察互为倒数的两个数的变化规律得出求一个数的倒数的方法。

苏教版六年级数学下册教案篇7

教学目标:

1、知识与技能:使学生理解比例尺的意义,学会求比例尺、实际距离和图上距离。

2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。

3、情感态度与价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。

教学重点:

理解比例尺的意义,根据比例尺的意义求比例尺、实际距离和图上距离。

教学难点:

运用比例尺的有关知识,学会解决生活中的一些实际问题。

教学准备:多媒体课件。

教学过程:

一、展示目标,引入本课。

二、探究新知,意义建构

1、看一看

下面几幅地图的比例尺分别是多少。①中华人民共和国这幅地图的比例尺是多少?(1:6000000)②安庆市这幅地图的比例尺是多少?(1:2500000)③笑笑家的平面图按照一定的比例画在纸上,这幅平面图的比例尺是多少?(1:100)

2、说一说

(1)比例尺1:100表示什么意思呢?

生:图上1厘米长的线段表示实际距离100厘米。

(2)在比例尺1:20xx的地图上,图上距离1厘米,表示实际距离(20xx)厘米。

(3)在比例尺1:40000的地图上,实际距离是图上距离的(40000)倍。

3、议一议

(1)什么是比例尺呢?

图上距离和实际距离的比,叫做比例尺。

(2)比例尺怎样表示呢?

比例尺=图上距离:实际距离或比例尺=图上距离/实际距离(板书:比例尺=图上距离:实际距离:)

(3)比例尺有什么特征呢?

①比例尺与一般的尺子不同,它是一个比,不带计量单位;②图上距离和实际距离的单位是统一的;③比例尺的前项,一般应化简成“1”,如果写成分数的形式,分子也是“1”。

?意图】数学概念不是老师灌输给学生的,而是在学生有了感性认识之后,自己总结和概括出来的,自己发现特征的,不仅知其然,还要知其所以然,学生只有经历知识和概念的形成过程,才能真正理解。

三、拓展延伸,巩固新知

1、有时,比例尺的图上距离比实际距离大。一个精密零件的长度只有3.5毫米,画在一张图纸上是70毫米,这幅设计图纸的比例尺是多少?

70:3.5=700:35=20:1

答:这幅设计图纸的比例尺是20:1。

2、有的地图上的比例尺用线段来表示。小明家在学校的正西方,到学校的实际距离是900米。你有办法找到小明家在图上的位置吗?1厘米相当于实际距离300米。(在学校正西方向900米。)

3、这位老师从广州坐飞机到北京开会,实际距离是多少千米呢?

32×6000000=192000000(厘米)192000000厘米=1920(千米)

答:广州到北京实际距离是1920千米。

五、总结新课,整理知识

通过今天的学习,你有什么收获呢?

板书设计:比例尺

比例尺=图上距离:实际距离

实际距离=图上距离×1厘米表示的实际距离

图上距离=实际距离÷1厘米表示的实际距离

会计实习心得体会最新模板相关文章:

一年级数学下册数学教案7篇

冀教版七年级下册教学计划7篇

一年级下册数学教案7篇

人教版六年级数学工作总结7篇

一年级数学下册数学教案模板8篇

一年级数学下册数学教案精选6篇

一年级数学下册数学教案推荐5篇

小学数学一年级下册教案5篇

一年级下册数学教案5篇

二年级下册数学认识角教案5篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    120483

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。