360好工作网 >述职报告

数学宫教案推荐7篇

写一份完整的教案,在接下来的教学工作中起着相当大的作用,在上课前,我们老师一定要将有关的教案制定完善,下面是360好工作网小编为您分享的数学宫教案推荐7篇,感谢您的参阅。

数学宫教案推荐7篇

数学宫教案篇1

教学内容:

北师大版小学数学五年级下册第七单元中位数和众数。

教材简析:

本节课是在学生已掌握平均数基础上来学习的。通过挖掘生活中丰富的课程资源,让学生经历统计活动的过程中,学会求中位数和众数并理解它们的实际意义,学会对数据进行分析,进一步培养学生初步的统计能力。

学生分析:

学生已经具有一定的统计能力,并善于在生活中发现问题,乐于在合作、探究中解决问题,所以本节课主要是引导学生在自主、探究的活动中来获取新知。

教学目标:

1、通过对数据的分析,会求中位数与众数,并能根据具体问题解释其实际意义。

2、培养学生发现问题、分析问题、解决问题的能力,并在具体活动中培养学生的探究意识与合作能力。

3、感受统计在生活中的应用,增强统计意识,培养统计能力。

教学重点:

会求中位数和众数,能结合情境理解其实际意义。

教学难点:

能根据具体问题情境选择适当的统计量表示数据的不同特征。

教学设想:

首先创设小明找工作时遇到问题的情境,通过对平均数的分析引发学生认知冲突,引出寻找中位数的必要性;然后通过对数据的观察、分析、比较,学会确定中位数和众数。

通过调查学生的体重、年龄、鞋号,让学生经历数据收集、整理、分析的过程,加深对中位数和众数意义的理解,体会统计知识在生活中的应用,从而进一步培养学生的统计能力。

教学过程:

一、创设情境,引发认知冲突

1、师:老师想了解你们长大以后都想做什么呢?

生:军人。

师:多远大的志向啊!共和国的卫士。

生:教师。

师:人类灵魂的工程师。

师:看来你们每个人都有自己的想法,为了实现你们的理想,一定要从小做起加倍努力呀!老师想问你们一个问题,假如你现在刚刚大学毕业,在找工作时你应该关注什么?

生:关注公司的实力。

生:关注公司的工作环境。

生:我比较关注我的工资是多少?

师:是啊,工资的确是人们比较关注的一个条件,很多人在找工作时都要考虑这个问题。我的一位好朋友张明在求职的过程中就遇到了这方面的问题,我们一起来看一下。

2、师出示课件,指名读招聘启事。

师:从招聘启事中你能获得哪些信息?

生:我知道了这家公司要招聘员工。

生:我还知道这家公司员工的平均工资是2000元。

师:对啊,平均工资2000元,小明一看比较符合他的要求,于是就兴冲冲地来到了招聘处,经理对他进行了全面考核后对他说:根据你应聘的岗位我们给你的工资是1400元。(出示课件。)

师:如果你是小明,听到这个消息你会怎么想?

生:招聘启事上不是说平均工资是2000元吗?为什么给我的工资却是1400元?

生:这是一家骗人的公司,明明是2000元的基本工资,为什么只给我这些呢?

师:小明也有这些疑问,经理自然也有他的道理,这时他拿出该公司员工月工资表。

师:大家认真观察这组数据,你能发现什么?

生:大多数员工的工资都在2000元以下。

生:我发现老板没有骗人,因为这些员工的工资有高有低,平均工资的确是2000元。

师:老板没有骗人,可是大多数员工的工资又都在2000元以下?那到底问题出在什么地方呢?

生:因为两个经理的工资特别高,所以使得员工的工资比平均工资都低。

生:因为经理的工资高,所以把平均值拉高了。

师:同学们分析得很有道理,由于平均数2000受到较大数据的影响,已经不能合理地反映这家公司工作人员工资一般水平了。

二、揭示问题,自主探究新知

1、中位数。

师:再观察这组数据,你认为哪个数据最能代表员工工资的一般水平?自己先想一想,然后和你的同桌或其他同学交流一下。(学生交流并汇报)

师:你认为应该是哪个数据更能表示这家公司员工工资的一般水平?

生:我认为是1800元,因为它和2000元比较接近。

生:我们组认为应该是1500元,因为它在9个数据的最中间。

生:我认为是1300元,因为去掉经理和副经理的工资,它在这组数据的中间。

师:现在大家意见不统一,比较一下这3个数,你觉得哪一个数更合理呢?可以在小组中再讨论一下,交流一下你们的想法。

生:我认为应该是1500元,因为它在工资表的最中间的位置。

生:我们也认为是1500元,因为它在中间更能表示员工工资的一般水平。

生:我们也认为是1500元,因为它不高也不低,能代表一般水平。

师:通过第一次的交流大家说出了自己的想法,进一步的讨论和研究让我们达成了共识,现在大家都认为1500元最能代表员工工资的一般水平。观察1500在这组数据中处于什么位置?

生:中间位置。

师:(板书:中间)那它前面有几个比它大的数据?(4个)后面有几个比它小的数据。(4个)它处于9个数据的最中间的位置。

师:那我们看这9个数据是怎么排列的啊?

生:从大到小。(板书:大小)

师:(手势)这样呢?(从小到大)

师:我们把具有这样特点的数就叫做中位数。(板书:中位数)

师:你能不能根据自己的理解说一说什么是中位数?

师:你的概括能力真强,通过刚才的学习大家对中位数的理解越来越全面了,我们一起来看一下大屏幕。(出示中位数概念并指名读。)

师:你认为中位数和平均数哪一个更能表现这家公司员工工资的一般水平?

生:中位数。

师:那么作为商店经理为什么要在招聘启事中打出平均数呢?

生:是因为在这里平均数比中位数要高,能吸引更多的人来。

师:看来啊,这是商家的一种策略。我们分析一组数据时,由于所站的角度不同,往往关注点就不同,所以才会选择不同的统计量来表示一组数据的不同特征。

师:我的朋友小明考虑再三,还是接受了这份工作。他的加入使工资表发生了变化,那现在这组数据的中位数是多少呢?

生:1500。

生:1400。

生:这组数据最中间是1500和1400,中位数就应该是它俩中间的数。

生:我认为它俩中间的数就是它们两个的平均数。

师:你同意他的观点吗?口算一下应该是多少?(电脑出示求法。)

师:对照这两组数据中位数的求法,你能发现什么规律?

生:当数据个数是奇数时,中位数就是最中间的那个数;当数据个数是偶数时,中位数就是最中间两个数的平均数。

师:同学们可真聪明,不但会分析问题,还能在分析的过程中发现规律。看来中位数只和数据的位置和排列有关系。

2、众数。

师:其实生活中中位数的应用很多,老师想调查一下你们的体重是多少好不好?

师:你们发现老师在写这些数据时,是怎么写的?

生:是按照从大到小的顺序写的。

师:观察这组数据的中位数是多少?它表示什么?你的体重和这组数据对照,处于什么水平?

生:中位数是80,它表示这一组同学的体重一般是80斤。

生:我的体重是62斤,和这组同学比较我处于中等偏下的水平。

生:我的体重是96斤,和他们比较我处于中等偏上的水平。

师:有和这几个同学的体重一样的吗?

生:我的体重是80斤。

生:我的体重也是80斤。

师:我们观察现在的这组数据,除了能找出中位数以外,你还发现它有什么特点?

(出示数据:62768083978080)

生:我发现有3个同学的体重是一样的,是80斤。

师:说明80出现的次数最多。

(板书:出现次数最多)

师:具有这样特点的数我们就叫众数。(板书:众数)

师:根据你的理解说说什么是众数?

生:我认为众数就是一组数据中出现次数多的数。

师:(电脑出示众数概念并指名读)我们看这组数据的众数是多少?

生:80。

师:说明在调查的这几个同学中,体重是80斤的最多。看来众数只和数据出现的次数有关系。

师:王老师还想了解一下,同学们今年多大了?(10、11、12。)10岁的举手我们看一下,11岁的举手,那12岁的呢?你们说咱班十几岁的同学最多?(11)那么11就是我们班同学年龄(众数)

3、新课小结。

师:通过我们共同研究不仅对平均数有了新的认识,还结识了两位新朋友:中位数和众数。(板书)根据你的理解说说它们3个统计量都有什么特点?

生:平均数和每个数据都有关系。

生:中位数是一组按照一定顺序排列的数据中最中间的那个数。

生:一组数据中出现次数最多的数就是众数。

生:我知道了当一组数据个数是奇数时,中位数就是最中间的那个数;而当数据个数是偶数时,中位数就是最中间两个数的平均数。

师:其实统计知识在我们生活中有着非常广泛的应用。

三、联系生活,突出现实意义

师:老师还想做一个现场小调查。你们都知道自己穿多大号码的鞋吗?现在分别统计一下男女同学的鞋号。(生分男、女生组开始统计,记录员进行整理)

师:我们来观察这两张统计表,你能从中获得哪些信息?

生:我知道了穿37号鞋的同学最多,穿40号鞋的最少。

师:如果你是一家儿童鞋店的经理,针对这两组数据提供的信息,会对你有什么帮助?

生:多进37号的鞋,因为穿它的人多。

生:我想再多进一些38号的鞋,因为随着学生长大脚也会变大。

生:少进一些34号、40号的鞋,因为穿这些号的人少。

师:通过这节课的学习,同学们不但会分析数据,还能根据数据进行决策呢,看来你们的收获可真不少。

四、全课小结

师:其实数学知识能帮助我们解决生活中许多实际问题,生活中处处离不开数学,如果你是个有心人,就到生活中去寻找吧!

反思:

本节课教学中,师生在共同研讨、交流、互动中三维目标得到了很好的落实,学生的能力得到了提高。学生在解决问题的过程中加深了对概念的理解,并且体会到平均数、中位数、众数三者的不同特征及其实际意义。

回顾本节课,主要有以下几方面的特点:

(一)有冲突才有探究,有认知才会建构。

通过开放性的问题设计引发学生思考,使学生在认知结构上产生冲突,使之成为学生重新建构认知的良好契机。在学生主动探索、思考、发现过程中,体会到中位数的产生过程及实际背景。这样,学生不但完成了对新知的整合与建构,而且把探索求知、发现新知的权利真正交给了学生。

(二)有合作才有交流,有补充才愈完善。

在本节课中,无论从概念的得出、问题的解决、还是决策的制定,合作与交流贯穿整个教学过程。通过组内讨论、同桌交流体现了各层次学生对知识的不同理解;在交流过程中,每个学生的思维与智慧都被整个群体共享,学生对概念的理解更全面,更深入。

以上几点是本节课把握比较成功的地方,但仍然存在着遗憾和不足:例如众数的学习虽然很自然很容易,但认识比较浅显,如果能再充分地利用这组数据,引导学生发现一组数据中的众数可能有1、2个或可能没有,那样学生对众数的认识会更全面。中位数在学生的生活中运用不是很多,如何通过丰富的事例让学生感受到中位数和众数在生活中的意义和作用,还值得我们进一步去研究。

总之,整节课学生经历着在观察中思考,在思考中发现,在发现中争论,在争论中提升的过程。我们把课堂真正还给了学生,师生在共同的研讨、交流中感受数学学习的乐趣。

数学宫教案篇2

教学内容:

教材p44-p46例1-例3做一做,练习十第1-3题

教学目标:

知识与技能

1.使学生理解用字母表示数的意义和作用。

2.能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公并能初步应用公式求周长、面积。

3.使学生能正确进行乘号的简写,略写。

过程与方法

经历用字母表示数的理解过程,体验迁移推理的学习方法,渗透求未知数的思想。

情感态度与价值观

在学习活动中,使学生获得热爱数学知识的积极情感,沟通算数知识与代数知识之间的联系,培养学生的抽象思维能力。

教学重点:

理解用字母表示数的意义和作用

教学难点:

能正确进行乘号的简写,略写。

教学过程:

一、谈话激趣,引入课题

同学们,在生活中只要我们去认真的观察思考,就会发现很多的知识。大家看,老师在生活中找到一些这样的字母,你们知道它们都代表了什么吗?(利用生活中的经验把学生带入数学。)

课件出示:cctvkfcnbaqq(中国中央电视台肯德基美国男子篮球联赛腾迅聊天工具)

大家想想,用这些字母来代替这些名称有什么样的好处?

(简单好记。渗透用字母表示的优越性)

其实,这样的字母不仅仅我们日常的生活中经常可以看到,我们在数学的世界里也经常会用到,今天我们就来学习用字母表示数(板书课题)

二、探究新知

1.投影出示例1:(探秘)

(1)观察第一组三角形中的数字,你有什么发现?

(都是按规律排列的,三角形两底角的数字之和等于顶角上的数字)

那么图中的符号表示什么数字呢?(指名口答)

问:每行图中的数是按什么规律排列的?(指名口答)

(2)尝试练习:想一想、填一填(课件出示)

①2、4、6、c、10、12c=()

②b+b+b=24b=()

③a×5=40a=()

观察一下,你有什么发现?(不同的字母可以表示相同的数)。提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都

是用一些符号或字母来表示的)

师:在数学中,我们经常用字母来表示数。

问:你还见过那些用符号或字母表示数的例子?

如:扑克牌,行程a、b两地,c大调。

2、教学例2

(1)a×b=b×()

a+b=()+()

(课件出示)

师:你怎么想到要填a,你的根据是什么?

生:我是根据乘法的交换律和加法的交换律来填的。

师:如果用a、b、c来表示三个数,你们能用字母表示出其它运算定律吗?

学生尝试写,后汇报展示。

(2)你们认为用字母来表示运算定律有什么好处?

我们已经学过了一些运算定律,你会把它们表示出来吗?

同桌之间先说一说运算定律是怎么样的,如何用字母表示出来,然后指名汇报。

师:我们用字母表示出这些运算定律,你有什么体会?

组织学生交流,使学生明确:用字母表示运算定律,简明易记,便于应用。

(3)让学生看书45页的“你知道吗?”然后汇报字母还可以表示哪些计量单位。

3.教学简写

(1)师:观察6×x,你们发现了什么?(x和×长的很象),因为这个,在数学王国里曾经引发过一场风波:一天早朝上,乘号对国王说:“国王,我和x长的太象了,您得想个办法把我们区分开来呀。”国

王下令:“+”“-”“÷”先行退朝,“×”号留下下议事。第二天,国王宣布了以下规定:(多媒体出示)

①在含有字母的式子里,数字和字母,字母和字母中间的乘号可以记作“.”,也可以省略不写。省略乘号时,一般把数字写在字母的前面。如:a×b=a.b=ab,4×a=4.a=4a②两个相同字母相乘时,可以写成以下形式:如:a×a=a.a=a2读作:a的平方,表示2个a相乘。

③当数字1与字母相乘时,1也省略不写。如:1×m=m(2)学生四人小组为单位讨论学习国王的规定:

教师提出小组合作学习的要求:

组长组织,要求每个组员都要发表意见。

记录员记录学习过程。

4、阶段练习

1、省略乘号写出下面各式。

2、小小审判官。

⑴6+a可以简写作6a。()

⑵6×4可以简写作6.4()

⑶x2与2x所表示的意义相同。()

5、教学例3。

今天我们跟字母成了好朋友,其实以前也和字母打过交道,比如计算公式。

回顾:你们能用含有字母的式子表示学过的计算公式吗?

如果周长用字母c表示,面积用字母s表示,边长用字母a表示,你会用字母表示正方形的周长和面积吗?

c=s=还记得我们学过哪些运算定律吗?那能不能用字母它们呢?真自信。好!下面请大家写在练习本上。

反馈:说说表示的是什么计算公式?师:你们能利用这些计算公式进行计算吗?试一试。

出示例题:你能利用公式计算下面正方形的面积和周长吗?(黑板贴出正方形纸片)

师:6㎝表示什么意思吗?

生:表示正方形的边长是6厘米。

师:你们能求出它的面积和周长吗?

(请一名学生上黑板来做,其余学生在下面练习)

师:谁来评价一下他做得怎么样?

生1:我认为做得比较可以。

生2:我认为他的面积单位应写成㎝2,不应写成㎝。

师:看看老师是怎么做的?

师:“利用公式计算”就是要求我们在计算时先写出公式,然后把字母表示的数值代入公式进行计算。

三、轻松一刻,发展提高。

(一)数青蛙

同学们学得真好,现在我们来轻松一下。

(课件):1只青蛙1张嘴,2只眼睛4条腿;

2只青蛙2张嘴,()只眼睛()条腿;

3只青蛙()张嘴,()只眼睛()条腿;

()只青蛙()张嘴,()只眼睛()条腿。

我们先试着读一读。你能用一句话说说这首儿歌吗?

(二)练兵营

填空

1、用a、b、c表示三个数,乘法分配律可表示成()。

2、用字母a表示苹果的单价,b表示数量,c表示总价。那么c=(),b=()。

3、一个等边三角形,每边长a米。它的周长()米。

4、一辆汽车t小时行了300千米,平均每小时行()千米。李师傅每小时加工40个零件,加工了a小时,一共加工了()个。

5、5x+4x=()

8y-y=()

7x+7x+6x=()

7a×a=()

15x+6x=()

5b+4b-9b=()

选择(将正确答案的序号填在括号里)

1、a2与()相等。

(1)a×2(2)a+2(3)a×a2、2x一定()x2。

(1)大于

(2)小于

(3)等于

(4)不能确定

3、丁丁比昕昕小,丁丁今年a岁,昕昕今年b岁,2年后丁丁比昕昕小()岁。

(1)2(2)b-a(3)a-b(4)b-a+24、当a=5、b=4时,ab+3的值是()。

(1)5+4+3=12(2)54+3=57(3)5×4+3=23

四、走进名人屋

最早使用字母来表示数的人是法国数学家韦达,韦达一生致力于对数学的研究,作出很多重要贡献,成为那个时代最伟大的数学家,自从韦达系统使用字母表示数后,引出了大量的数学发现,解决很多古代的复杂问题。

师:看了介绍你想对韦达说点什么吗?

生1:韦达,我要对你说,你的智慧真是不可限量。

生2:韦达真伟大,你发明的用字母表示数使人类生活和学习方便了许多,谢谢你!

师:你们想不想像韦达一样将来做一个成功的人?

师:那好,老师这里就有一个成功秘诀,想不想知道。

课件出示:a=x+y+za代表成功,x代表艰苦的劳动,y代表正确的方法,z代表少说空话。

师:看了这个公式,你得到了什么启示?

生:我知道了只要艰苦劳动,掌握了方法,少说空话,就能成功。

师:说得真好,只要同学们在今后的学习中掌握好正确的方法,刻苦努力,少说空话,一定能够取得成功!祝你们早日成功!

五、课堂小结,质疑评价。

阅读课本第44-46页。四人小组交流,汇报

这节课你们有收获吗?你们有收获就是老师今天的收获。谁来说说你收获些什么?最成功的地方是什么?还有什么问题?

六、作业

第49页练习十第1、2、3题

数学宫教案篇3

教学目标

知识目标:

用表面积等知识,继续探索多个相同长方体叠放后使其表面积最小的策略。

能力目标:

体验解决问题的基本过程和方法,提高解决问题的能力。

情感目标:

通过解决包装的问题,体验策略的多样化,发展优化思想。

教学重点、难点:

利用表面积等知识,探索多个相同长方体叠放后使其表面积最小的策略。

教学策略:

让学生自己亲自实践,引导学生观察、比较、交流,反思那种包装方案最节约。

教学准备:被包装的实物、实物图。

教学过程:

一、复习

说一说怎样包装多个相同的长方体物体能节约用纸?

二、实践活动

第1题:

(1)要学生明白要解决的问题是什么,再动手操作、画图、计算、空间想象来解决包装4盒磁带的问题。

(2)亮出一盒磁带的长、宽、高,根据这个尺寸选择表面积最小的包装方案

(3)提出小组合作的要求,进行讨论、交流。

(4)根据数据得出结论。

第2题:

先让学生独立完成,再在小组交流,然后进行全班交流。

三、总结交流

根据自己的学习情况说说自己的收获,评价自己在学习中的表现。

板书设计:

包装的学问

(学生班数自己的计算情况)

数学宫教案篇4

教学目标:

1.结合实际问题情景,理解分层抽样的必要性和重要性;

2.学会用分层抽样的方法从总体中抽取样本;

3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

教学重点:

通过实例理解分层抽样的方法.

教学难点:

分层抽样的步骤.

教学过程:

一、问题情境

1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

二、学生活动

能否用简单随机抽样或系统抽样进行抽样,为什么?

指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

由于样本的容量与总体的个体数的比为100∶2500=1∶25,

所以在各年级抽取的个体数依次是,,,即40,32,28.

三、建构数学

1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

2.三种抽样方法对照表:

类别

共同点

各自特点

相互联系

适用范围

简单随机抽样

抽样过程中每个个体被抽取的概率是相同的

从总体中逐个抽取

总体中的个体数较少

系统抽样

将总体均分成几个部分,按事先确定的规则在各部分抽取

在第一部分抽样时采用简单随机抽样

总体中的个体数较多

分层抽样

将总体分成几层,分层进行抽取

各层抽样时采用简单随机抽样或系统

总体由差异明显的几部分组成

3.分层抽样的步骤:

(1)分层:将总体按某种特征分成若干部分.

(2)确定比例:计算各层的个体数与总体的个体数的比.

(3)确定各层应抽取的样本容量.

(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

四、数学运用

1.例题.

例1(1)分层抽样中,在每一层进行抽样可用_________________.

(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

③某班元旦聚会,要产生两名“幸运者”.

对这三件事,合适的抽样方法为()

a.分层抽样,分层抽样,简单随机抽样

b.系统抽样,系统抽样,简单随机抽样

c.分层抽样,简单随机抽样,简单随机抽样

d.系统抽样,分层抽样,简单随机抽样

例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

很喜爱

喜爱

一般

不喜爱

2435

4567

3926

1072

电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

解:抽取人数与总的比是60∶12000=1∶200,

则各层抽取的人数依次是12.175,22.835,19.63,5.36,

取近似值得各层人数分别是12,23,20,5.

然后在各层用简单随机抽样方法抽取.

答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

数分别为12,23,20,5.

说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

五、要点归纳与方法小结

本节课学习了以下内容:

1.分层抽样的概念与特征;

2.三种抽样方法相互之间的区别与联系.

数学宫教案篇5

教学目标:

1.通过直观的操作活动,理解异分母分数加减法的算理。

2.能正确计算异分母分数的加减法。

3.通过渗透转化的数学思想和探究解决计算问题的方法,培养学生从多角度思考问题的能力以及严谨认真的学习习惯。

教学重点:

异分母分数加减法的计算,结果不是最简分数的要进行约分。

教学难点:

把分母不同的分数通过通分化成分母相同的分数。

教学过程:

一、复习导入

计算1/4+1/5 2/15+1/5

上节课,我们学习了异分母分数相加减,那么异分母分数相加减,同学们要注意什么呢?

今天,我们进一步探讨异分母分数的相加减。

二、试一试

1.比较两种计算方法,笑笑的方法是找公倍数,最后进行约分,淘气的方法是找最小公倍数。比较后发现,找最小公倍数,计算起来比较简单,计算的正确率会高一点。其次,计算结果能约分的要约分成最简分数。

2.算一算,并与同伴交流你的做法。

生独立完成,反馈。第一题结果要进行约分。

3.森林医生。

先观察,说一说三道题目错在哪里?再进行独立计算,改正。

4.应用题。

读题找到数学信息,并提出问题。

5.解方程。

根据数量关系:加数+加数=和,被减数减数=差 这两个数量关系,找到x在题目中所表示的量,再进行解方程计算。

6.拓展题,第8题。

重点交流学生估计的方法,再计算验证。

三、课堂小结

这节课你学到了什么知识?你知道埃及人怎样表示分数的吗?自己读一读你知道吗?

四、布置作业

数学宫教案篇6

活动目标

1、感受门牌号码与楼层、房间位置之间的对应关系,学习用数字表示。

2、运用生活中的序数经验,为动物楼房设计门牌号码。

3、体验数字在日常生活中的作用。

活动准备

1.教具:教学挂图(一)中1~10的数卡(2~3套),教学挂图(四)中小动物楼房。

2.学具:操作材料,1个空白信封,铅笔。

活动过程

一、回忆数字在生活中的作用。

1、教师:在我们的生活环境中有许多数字,你在哪里见到过数字?它可以告诉我们什么?

2、引导幼儿从时钟、电话、汽车站牌、商品标价等多方面感受数字在生活中的作用。

二、了解门牌号码在日常生活中的作用。

1、教师:你家的门牌号码有数字吗?门牌号码上的数字可以告诉我们什么?如果我们家中的地址没有数字,会发生什么问题?

2、教师出示教学挂图(四)及信封,以“小狗邮递员来到小动物楼房前不知道把信送给谁”为由,引导幼儿讨论分析原因。

三、讨论明确门牌号码与楼层、房间位置之间的关系。

1、请个别幼儿讲述自己家的门牌号码是多少,隔壁邻居家的门牌号码及楼上和楼下邻居的门牌号码又是多少。教师随幼儿的讲述进行记录。

2、引导幼儿观察教师记录的门牌号码,如401、402、503、604等。

四、教师:你知道这些小朋友家住在第几层楼第几间房呢?你是怎么知道的?

1、讨论:小朋友的家是401,隔壁是402,为什么前面的数字都是4呢?为什么小朋友的家是401,楼上是501,楼下是301呢?为什么后面的数字都是一样呢?

2、引导幼儿发现门牌号码前面的数字表示的是楼层,后面的数字则表示楼层中的第几间,401、501楼层不一样,位置一样,401、402楼层一样,位置不一样。

五、尝试给小动物家设计门牌号码。

1、教师出示“小动物楼房”的作业单,交待设计门牌号码的规则与要求。

六、 教师:看看小动物住在新楼房的哪一层?然后为每家设计门牌号码。每家的号码不能相同,要让别人能从门牌号码中看出每只小动物住在几楼,谁和谁是隔壁邻居,谁和谁是楼上楼下的邻居。

1、幼儿为小动物家设计门牌号码,教师对出现困难的幼儿给予引导和帮助。

七、展示布置设计结果,相互学习同伴间的各种设计。

1、请幼儿将自己设计的门牌号码展示在绒板上,并鼓励幼儿主动与同伴进行交流。

2、观察个别幼儿的作业单。

八、教师:这幢楼房都有哪些门牌号码?它们一样吗?从门牌号码中能够看出××(如小狗)住在几楼吗?哪些门牌号码是它的隔壁邻居?哪些门牌号码是它的楼上楼下邻居?

1、幼儿相互交流各自设计的门牌号码,感受数字在表示门牌号码时与楼层、房间位置之间的关系。

活动延伸:

将幼儿设计好门牌号码的一幢幢楼房组成一个小区,引导幼儿为整个小区内的每幢楼房设计楼号。

数学宫教案篇7

教学目标

知识与技能

用二元一次方程组解决有趣场景中的数字问 题和行程问题,归纳用方程(组)解决实际问题的一般步骤.

过程与方法

1.通过设置问题串,让学生体会分析复杂问题的思考方法.

2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程组是刻画现实世界 的有效数学模型.

情感态度与价值观

在学习过程中让学生体验把复杂问题化为简单问题的策略,体验成功感,同时培养学生克服困难的意志和勇气, 树立自信心,并鼓励学生合作 交流,培养学生的团队精神.

教学重点

1.初步体会列方程组解决实际问题的步骤.

2.学会用图表 分析较复杂的数量关系问题。

教学难点

将实际问题转化 成二元一次方程组的数学模型;会用图表分析数 量关系。

教学准备:

教具:教材,课件,电脑(视频播放器)

学具:教材,练习本

教学过程

第一环节:复习提问(5分钟,学生口答)

内容:填空:

(1)一个两位数,个位数字是 ,十位数字是 ,则这个两位数用代数式表示为 ;若交换个位和十位上的数字得到一个新的两位数,用代数式表示为 .

(2)一个两位数,个位上的数为 ,十位上的数为 ,如果在它们之间添上一个0,就得到一个三位数,这个三位数用代数式可以表示为 .

(3)有两个两位数 和 ,如果将 放在 的左边,就得到一个四位数,那么这个四位数用代数式表示为 ;如果将 放在 的右边,将得到一个新的四位数,那么这个四位数用代数式可表示为 .

第二环节:情境引入(10分钟,学生动脑思考,全班交流)

内容:小明爸爸骑着摩托车带着小明在公路上匀速行驶,下图是小明每隔1小时看到的里程情况.你能 确定小明在12:00时看到的里程碑上的数吗?

第三环节:合作学习(10分钟,小组讨论,找等量关系,解决 问题)

内容:例1

两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大2178,求这两个两位数.

学生先独立思考例1,在此基础上,教师根据学生思考情况组织交流与讨论.

第四环节:巩固练习(10分钟,学生尝试独立解决问题,全班交流)

内容:练习

1.一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字 之和,商是5,余数是1.这个两位数是多少?

2.一个两位数是另一个两位数的3倍,如果把这个两位数放在另一个两位数的左 边与放在右边所得的数之和为8484.求这个两位数.

第五环节:课堂小结(5分钟,教师引导学生总结一般步骤)

内容:

1.教师提问:本节课我们学习了那些内容,对这些内容你有什么体会和想法?请与同伴交流.

2.师生互相交流总结出列方程(组)解决实际问题的一般步骤.

第 六环节:布置作业

内容:习题7.6

a组(优等生) 2,3,4

b组(中等生)2、3

c组(后三分之一生)2

会计实习心得体会最新模板相关文章:

小小班数学课教案模板7篇

小学四年级数学教案模板7篇

三年级数学认识小数教案7篇

小班数学大与小教案最新7篇

小班数学大与小教案反思7篇

小学数学数与代数教案7篇

小学数学9加几教案优质7篇

苏教版一年级数学下册教案7篇

小学一年级数学人教版教案7篇

一年级数学9加几教案优质7篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    76506

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。